Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743046

RESUMO

The misuse of psychostimulants is an increasing behavior among young people, highlighting in some countries the abuse of modafinil (MOD) as a neuropotentiator. However, several clinical trials are investigating MOD as an alternative pharmacological treatment for attentional deficit and hyperactivity disorder (ADHD) in children and adolescents. On the other hand, the early use of psychostimulants and the misdiagnosis rates in ADHD make it crucial to investigate the brain effects of this type of drug in young healthy individuals. The aim of this work was to evaluate the effects of chronic MOD treatment on neurochemicals (γ-aminobutyric acid and glutamate), dopamine receptor 2 (D2) expression and behavior (non-selective attention "NSA") in the mesocorticolimbic system of young healthy Sprague-Dawley rats. Preadolescent male rats were injected with MOD (75 mg/kg, i.p.) or a vehicle for 14 days (from postnatal day 22 to 35). At postnatal day 36, we measured the GLU and GABA contents and their extracellular levels in the nucleus accumbens (NAc). In addition, the GLU and GABA contents were measured in the ventral tegmental area (VTA) and D2 protein levels in the prefrontal cortex (PFC). Chronic use of MOD during adolescence induces behavioral and neurochemical changes associated with the mesocorticolimbic system, such as a reduction in PFC D2 expression, VTA GABA levels and NSA. These results contribute to the understanding of the neurological effects of chronic MOD use on a young healthy brain.


Assuntos
Estimulantes do Sistema Nervoso Central , Área Tegmentar Ventral , Adolescente , Animais , Atenção , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Glutâmico/metabolismo , Humanos , Masculino , Modafinila/metabolismo , Modafinila/farmacologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743018

RESUMO

Early life exposure to sex hormones affects several brain areas involved in regulating locomotor and motivation behaviors. Our group has shown that neonatal exposure to testosterone propionate (TP) or estradiol valerate (EV) affected the brain dopamine (DA) system in adulthood. Here, we studied the long-lasting effects of neonatal exposure to sex hormones on behavioral and neurochemical responses to amphetamine (AMPH) and methylphenidate (MPD). Our results show that AMPH-induced locomotor activity was higher in female than male control rats. The conditioned place preference (CPP) to AMPH was only observed in EV male rats. In EV female rats, AMPH did not increase locomotor activity, but MPD-induced CPP was observed in control, EV and TP female rats. Using in vivo brain microdialysis, we observed that AMPH-induced extracellular DA levels were lower in nucleus accumbens (NAcc) of EV and TP female rats than control rats. In addition, MPD did not increase NAcc extracellular DA levels in EV rats. Using in vivo fast-scan cyclic voltammetry in striatum, MPD-induced DA reuptake was higher in EV than control rats. In summary, our results show that early life exposure to sex hormones modulates mesolimbic and nigrostriatal DA neurons producing opposite neurochemical effects induced by psychostimulant drugs in NAcc or striatum.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Transtornos Relacionados ao Uso de Substâncias , Propionato de Testosterona , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/farmacologia , Estradiol/farmacologia , Feminino , Masculino , Metilfenidato/farmacologia , Atividade Motora , Núcleo Accumbens , Ratos
3.
Addict Biol ; 26(1): e12851, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31691406

RESUMO

The lateral septum (LS) is a limbic nucleus interconnected with several brain areas involved in the regulation of mood and reward. Vasopressin (AVP) is a neuropeptide that has been related to the effects of drugs of abuse, but its role in the addictive process is poorly understood. LS expresses a high density of AVP 1A receptors (V1A ). The aim of this work was to examine whether the modulation of LS AVP system affects the behavioral and neurochemical responses to amphetamine (AMPH) in male rats. Our results show that AMPH-induced conditioned place preference (CPP) produces a decrease in LS AVP content. Besides, we demonstrate that the microinjection of AVP in the LS impairs the expression of AMPH-induced CPP and that this effect is mediated by the activation of the V1A receptor in the LS. AVP microinjection in the LS elicited a decrease in neuronal activity in the nucleus accumbens (NAc) in animals subjected to AMPH conditioning. Finally, AVP microinjection in the LS decreased dopamine (DA) release in the NAc. Overall, our data demonstrate that intra-LS AVP diminishes the expression of AMPH conditioning behavior while decreasing neuronal activity and DA release in the NAc. Presumably, the effects of AVP in the LS produce an inhibition of GABAergic projections to the VTA, increasing local inhibitory tone in this nucleus, which in turn reduces the activity of DA projections to NAc. Thus, these results contribute to the knowledge about the role of AVP in LS in regulating the reward circuit and addictive like behaviors.


Assuntos
Anfetamina/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Estimulantes do Sistema Nervoso Central , Condicionamento Operante/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos
4.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769501

RESUMO

Oxytocin (OT) and vasopressin (AVP) are hypothalamic neuropeptides classically associated with their regulatory role in reproduction, water homeostasis, and social behaviors. Interestingly, this role has expanded in recent years and has positioned these neuropeptides as therapeutic targets for various neuropsychiatric diseases such as autism, addiction, schizophrenia, depression, and anxiety disorders. Due to the chemical-physical characteristics of these neuropeptides including short half-life, poor blood-brain barrier penetration, promiscuity for AVP and OT receptors (AVP-R, OT-R), novel ligands have been developed in recent decades. This review summarizes the role of OT and AVP in neuropsychiatric conditions, as well as the findings of different OT-R and AVP-R agonists and antagonists, used both at the preclinical and clinical level. Furthermore, we discuss their possible therapeutic potential for central nervous system (CNS) disorders.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Ocitocina/uso terapêutico , Vasopressinas/uso terapêutico , Animais , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Agonismo de Drogas , Antagonismo de Drogas , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Ocitócicos/uso terapêutico , Vasoconstritores/uso terapêutico
5.
Neural Plast ; 2016: 4569785, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904299

RESUMO

We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 µL); DHT (dihydrotestosterone of 1.0 mg/50 µL); EV (estradiol valerate of 0.1 mg/50 µL); and control (sesame oil of 50 µL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Hormônios Esteroides Gonadais/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Di-Hidrotestosterona/administração & dosagem , Neurônios Dopaminérgicos/metabolismo , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Masculino , Núcleo Accumbens/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Propionato de Testosterona/administração & dosagem , Área Tegmentar Ventral/metabolismo
6.
Pharmacol Res ; 101: 2-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26190142

RESUMO

Pharmacology in Chile has about 75 years of history and from its beginning until today has grown exponentially. Today, pharmacology is taught in the biomedical careers of the main Chilean universities and research centers in pharmacology are in the north, central and south of Chile. This editorial offers an overview of the main milestones that have led to the consolidation of Chilean pharmacology in Latin America and the world.


Assuntos
Farmacologia/história , Chile , História do Século XX , História do Século XXI , Humanos , Farmacologia/educação , Sociedades Científicas/história
7.
Pharmacol Res ; 101: 116-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318765

RESUMO

A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20µM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10µM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100µM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems.


Assuntos
Cocaína/toxicidade , Dopamina/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Animais , Bicuculina/farmacologia , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Líquido Extracelular/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Estresse Fisiológico , Ácido gama-Aminobutírico/metabolismo
8.
J Neurosci Res ; 92(7): 937-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24753218

RESUMO

The lateral septum (LS) is a brain nucleus implicated in the addictive process. This study investigated whether withdrawal from chronic amphetamine (AMPH) induces alterations in dopamine (DA) transmission within the LS. Male Sprague-Dawley rats were injected with AMPH (2.5 mg/kg i.p.) or saline during 14 days and thereafter subjected to 24 hr or 14 days of withdrawal. After these withdrawal periods, we measured DA extracellular levels by in vivo microdialysis, DA tissue levels, and tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT2) expression in the LS. Our results showed a significant decrease in K(+) -induced release of DA in the LS of AMPH-treated rats, 14 days after withdrawal compared with saline-treated rats. There were no significant differences in DA tissue content and TH expression. Interestingly, there was a decrease of LS VMAT2 expression in AMPH-treated rats, 14 days after withdrawal compared with saline-treated rats. This is the first neurochemical evidence showing that withdrawal from repeated AMPH administration decreases K(+) -induced DA release in the rat LS. Our results suggest that this decrease in DA releasability could be due to a decrease in DA vesicular uptake. The possibility that these neurochemical changes are associated with AMPH abstinence syndrome should be further explored.


Assuntos
Anfetamina/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Dopamina/metabolismo , Núcleos Septais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/patologia , Análise de Variância , Animais , Modelos Animais de Doenças , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
9.
Front Pharmacol ; 15: 1364630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725665

RESUMO

Mounting evidence from animal models and human studies indicates that psychostimulants can significantly affect social behaviors. This is not surprising considering that the neural circuits underlying the regulation and expression of social behaviors are highly overlapped with those targeted by psychostimulants, which in most cases have strong rewarding and, consequently, addictive properties. In the present work, we provide an overview regarding the effects of illicit and prescription psychostimulants, such as cocaine, amphetamine-type stimulants, methylphenidate or modafinil, upon social behaviors such as social play, maternal behavior, aggression, pair bonding and social cognition and how psychostimulants in both animals and humans alter them. Finally, we discuss why these effects can vary depending on numerous variables such as the type of drug considered, acute versus long-term use, clinical versus recreational consumption, or the presence or absence of concomitant risk factors.

10.
Front Pharmacol ; 15: 1411927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135790

RESUMO

Introduction: The chronic use of psychostimulants increases the risk of addiction and, there is no specific pharmacologic treatment for psychostimulant addiction. The vasopressin (AVP) system is a possible pharmacological target in drug addiction. Previous results obtained in our laboratory showed that amphetamine (AMPH) treatment decreases lateral septum (LS) AVP levels in male rats, and AVP microinjection in LS decreases addictive-like behavior. The aim of the present work was to investigate the effect of AMPH treatment on LS AVP levels and the effect of LS AVP administration on the expression of AMPH-conditioned place preference (CPP) in female rats. The secondary objectives were to study the effect of LS AVP administration on LS GABA and glutamate release in male and female rats and on nucleus accumbens (NAc) dopamine (DA) release in female rats. Methods: Female rats were conditioned with AMPH (1.5 mg/kg i.p.) or saline for 4 days. Results: Conditioning with AMPH did not change LS AVP content in females. However, AVP microinjection into the LS decreased the expression of conditioned place preference (CPP) to AMPH. Glutamate and GABA extracellular levels in the LS induced by AVP were studied in males and females. NAc GABA and DA extracellular levels induced by LS AVP microinjection in female rats were measured by microdialysis. In males, AVP perfusion produced a significant increase in LS GABA extracellular levels; however, a decrease in GABA extracellular levels was observed in females. Both in males and females, LS AVP perfusion did not produce changes in LS glutamate extracellular levels. Microinjection of AVP into the LS did not change GABA or DA extracellular levels in the NAc of females. Discussion: Therefore, AVP administration into the LS produces different LS-NAc neurochemical responses in females than males but decreases CPP to AMPH in both sexes. The behavioral response in males is due to a decrease in NAc DA levels, but in females, it could be due to a preventive increase in NAc DA levels. It is reasonable to postulate that, in females, the decrease in conditioning produced by AVP microinjection is influenced by other factors inherent to sex, and an effect on anxiety cannot be discarded.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38565388

RESUMO

While there is extensive research on alcohol dependence, the factors that make an individual vulnerable to developing alcoholism haven't been explored much. In this study, we aim to investigate how neonatal exposure to sex hormones affects alcohol intake and the regulation of the mesolimbic pathway in adulthood. The study aimed to investigate the impact of neonatal exposure to a single dose of testosterone propionate (TP) or estradiol valerate (EV) on ethanol consumption in adult rats. The rats were subjected to a two-bottle free-choice paradigm, and the content of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens (NAcc) was measured using HPLC-ED. The expression of critical DA-related proteins in the mesolimbic pathway was evaluated through RT-qPCR and western blot analysis. Supraphysiological neonatal exposure to EV or TP resulted in increased ethanol intake over four weeks in adulthood. In addition, the DA and DOPAC content was reduced and increased in the NAcc of EV and TP-treated rats, and ß-endorphin content in the hypothalamus decreased in EV-treated rats. The VTA µ receptor and DA type 2 form short receptor (D2S) expression were significantly reduced in EV and TP male rats. Finally, in an extended 6-week protocol, the increase in ethanol consumption induced by EV was mitigated during the initial two hours post-naloxone injection. Neonatal exposure to sex hormones is a detrimental stimulus for the brain, which can facilitate the development of addictive behaviors, including alcohol use disorder.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético , Consumo de Bebidas Alcoólicas , Animais Recém-Nascidos , Dopamina , Estradiol , Núcleo Accumbens , Propionato de Testosterona , Animais , Masculino , Consumo de Bebidas Alcoólicas/metabolismo , Ratos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Estradiol/farmacologia , Propionato de Testosterona/farmacologia , Propionato de Testosterona/administração & dosagem , Dopamina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Feminino , Etanol/farmacologia , Etanol/administração & dosagem , Hormônios Esteroides Gonadais/metabolismo , Ratos Sprague-Dawley
12.
J Neuroendocrinol ; 35(7): e13308, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285180

RESUMO

Environmental enrichment is a widely used experimental manipulation that physically, cognitively and socially stimulates individuals. It has a great variety of long-term effects at neuroanatomical, neurochemical, and behavioral level; however, the influence of parental environmental enrichment during gestation and pregestation on the development of the offspring and on the mother's behavior has been poorly explored. This article presents a review of the literature from the year 2000 about the effects of maternal and paternal environmental enrichment on the behavioral, endocrine, and neural systems of offspring and parents. Relevant research terms were searched for on the biomedical databases, PubMed, Medline, ScienceDirect, and Google Scholar. The data suggest that paternal/maternal environmental enrichment can profoundly affect the developmental trajectories of offspring through putative epigenetic mechanisms. Environmental enrichment presents as a promising therapeutic tool for human health interventions, especially to counteract the deleterious effects of impoverished and adverse growing conditions.


Assuntos
Comportamento Animal , Epigênese Genética , Animais , Humanos , Pais
13.
Eur J Pharmacol ; 902: 174118, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33905702

RESUMO

Steroid sex hormones produce physiological effects in reproductive and non-reproductive tissues, such as the brain. In the brain, sex hormones receptors are expressed in cortical, limbic and midbrain areas modulating memory, arousal, fear and motivation between other behaviors. One neurotransmitters system regulated by sex hormones is dopamine (DA), where during adulthood, sex hormones promote neurophysiological and behavioral effects on DA systems such as tuberoinfundibular (prolactin secretion), nigrostriatal (motor circuit regulation) and mesocorticolimbic (driving of motivated behavior). However, the long-term effects induced by neonatal exposure to sex hormones on DA release induced by D1 receptor activation and its expression in nucleus accumbens (NAcc) have not been fully studied. To answer this question, neurochemical, cellular and molecular techniques were used. The data show sex differences in NAcc DA extracellular levels induced by D1 receptor activation and protein content of this receptor in male and female control rats. In addition, neonatal programming with a single dose of TP increases the NAcc protein content of D1 receptors of adult male and female rats. Our results show new evidence related with sex differences that could explain the dependence to drug of abuse in males and females, which may be associated with increased reinforcing effects of drugs of abuse.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Hormônios Esteroides Gonadais/farmacologia , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Ácido gama-Aminobutírico/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/administração & dosagem , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Envelhecimento , Animais , Animais Recém-Nascidos , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacologia , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Hormônios Esteroides Gonadais/administração & dosagem , Injeções , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/efeitos dos fármacos , Fatores Sexuais , Propionato de Testosterona/administração & dosagem , Propionato de Testosterona/farmacologia , Tempo
14.
Neuropharmacology ; 183: 108404, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197467

RESUMO

Some clinical trials are investigating modafinil (Mod) as a treatment for attentional deficit and hyperactivity disorder (ADHD) in children and adolescents. Mod increases dopamine (DA) levels in the reward system by blocking dopamine transporter (DAT). Social interactions are rewarding behaviors and evidence reveals the importance of reward circuitry in social interactions. Chronic psychostimulant treatments alter DA neurotransmission and associated behaviors. The aim of this work was to evaluate the effects of chronic Mod treatment during preadolescence on social play behavior, locomotor activity, and DA in nucleus accumbens (NAc). Preadolescent male Sprague-Dawley rats were injected with Mod (75 mg/kg i.p.) or vehicle for 14 days (PND22 to PND35). After that, we measured social play behavior, content and DA release in NAc by HPLC coupled to electrochemical detection, protein levels of DA type 2 receptor (D2) by Western blot and DA kinetic by fast-scan cyclic voltammetry (FSCV) in NAc. Regarding social play, the total number of pinning events decreased in the Mod group compared with the vehicle. The K+-stimulated DA release in NAc was significantly lower in Mod-treated rats compared with vehicle group. Also, Mod increases locomotor activity at the first injection, but this effect is almost completely lost at day 14 of Mod treatment. Chronic Mod treatment during preadolescence in rats impairs dopaminergic neurotransmission in NAc and decreases the capacity of rats to perceive rewarding effects of social play. Importantly, as Mod is being evaluated to treat ADHD in children and adolescents, potential effects on social behavior should be considered since this kind of behavior in this particular stage is crucial for neurodevelopment.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Modafinila/farmacologia , Interação Social/efeitos dos fármacos , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Recompensa
15.
Front Pharmacol ; 10: 295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971928

RESUMO

Neonatal programming with sex hormones produces long-term functional changes in various tissues, including the brain. Previously, we demonstrated a higher content of dopamine and an increase in potassium-induced dopamine release in the nucleus accumbens of adult rats exposed to estradiol valerate. On the other hand, sex hormones also affect the opioid system increasing the expression of the µ opioid receptor and ß-endorphins. Here, we investigated if neonatal programming with sex hormones alters the response to morphine during adulthood in rats and predispose them to neurochemical, rewarding and behavioral activating effects. We examined the effects of neonatal exposure to a single dose of estradiol valerate or testosterone propionate on morphine-induced (5 mg/kg, i.v.) dopamine release in the nucleus accumbens and morphine-induced (3 mg/kg, s.c.) locomotor activity and conditioned place preference when these rats were adults. Our results showed a significant increase in morphine-induced dopamine release in the nucleus accumbens of rats that were exposed neonatally to estradiol compared with control rats. This effect was correlated with higher place preference and locomotor activity induced by morphine in adult rats neonatally exposed to estradiol valerate. However, the effect of morphine on dopamine release and behaviors was similar in rats treated with testosterone compared to control rats. Additionally, the expression of mu (µ) opioid receptor, dopamine receptor type 1 (D1) and dopamine receptor type 2 (D2) in the nucleus accumbens of adult rats was not different after treatment with sex hormones. Taken together, our results demonstrated an enhancement of pharmacological effects produced by morphine in rats neonatally programmed with estradiol valerate, suggesting that early exposure to sex hormones could represent a vulnerability factor in the development of addiction to opioid drugs such as morphine and heroin in adulthood.

16.
J Neuroendocrinol ; : e12611, 2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29802803

RESUMO

Drug addiction is a chronic brain disease characterized by a compulsion to seek drugs, a loss of control with respect to drug consumption, and negative emotional states, including increased anxiety and irritability during withdrawal. Central vasopressin (AVP) and its receptors are involved in controlling social behavior, anxiety and reward, all of which are altered by drugs of abuse. Hypothalamic AVP neurons influence the stress response by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The extrahypothalamic AVP system, however, is commonly associated with social recognition, motivational and anxiety responses. The specific relationship between AVP and drugs of abuse has been rarely reviewed. Here, we provide an overview of the interaction between the brain AVP system and psychostimulants and alcohol. We focus on the effects of alcohol and psychostimulants on AVP regulation of the HPA axis, their effect on the brain AVP system and their behavioral implications, the influence of the AVP system on addictive behaviors, AVP's organizational effects on the brain and consequently on behavior, and we highlight clinical studies on the relation between the AVP system and drug addiction. Finally, we discuss the data to address areas that need further research to support clinical trials and prevent drug-related disorders. This article is protected by copyright. All rights reserved.

17.
Int J Dev Neurosci ; 25(6): 373-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17764866

RESUMO

The pituitary-adrenal axis response is gender-dependent, showing lower activity in male rats. Furthermore, males showed low emotional behavior and females high emotionality when exposed to such chronic stress situations. The gender of an animal is a relevant factor in the development of responses to stress. The aim of the present study was to investigate the influence of early maternal separation on the pituitary-adrenal activity and emotional behavior of adult male and female rats subjected to chronic variable stress. Male and female Wistar rats were isolated 4.5 h daily, during the three first weeks of life. At 48 days of age, the rats were exposed to variable chronic stress (five different stressors during 24 days). Non-maternally separated and maternally separated males showed lower levels of ACTH compared to females (p<0.01). In male rats exposed to variable chronic stress, the maternally separated animals showed a diminution in the levels of ACTH and Corticosterone (p<0.05) compared to non-maternally separated rats. In the Open Field test, the maternally separated and non-maternally separated-stressed males showed lower emotional reactivity compared with female rats. This was indicated by increase in ambulation (p<0.05) and decrease in defecation (p<0.05). Male rats subjected to variable chronic stress presented low emotional behavior seen in their lower defecation (p<0.05). Stressed females displayed decreased ambulation (p<0.05) and increased defecation (p<0.05), showing high emotional reactivity after exposure to chronic stress. Maternally separated males showed higher emotionality after the exposure to chronic variable stress. This was indicated by decrease in ambulation (p<0.05), decrease in rearing (p<0.05) and increase in defecation (p<0.05). Thus, maternal separation and variable chronic stress caused long-term gender-dependent alterations in pituitary-adrenal activity and emotional behavior.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Corticosterona/metabolismo , Privação Materna , Sistema Hipófise-Suprarrenal/metabolismo , Caracteres Sexuais , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Doença Crônica , Corticosterona/sangue , Defecação/fisiologia , Emoções/fisiologia , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Atividade Motora/fisiologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos , Ratos Wistar , Estresse Psicológico/fisiopatologia
18.
Cent Nerv Syst Agents Med Chem ; 14(2): 62-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25540983

RESUMO

Sex hormones exert differential effects on a variety of sensitive tissues like the reproductive tract, gonads, liver, bone and adipose tissue, among others. In the brain, sex hormones act as neuroactive steroids regulating the function of neuroendocrine diencephalic structures like the hypothalamus. In addition, steroids can exert physiological effects upon cortical, limbic and midbrain structures, influencing different behaviors such as memory, learning, mood and reward. In the last three decades, the role of sex hormones on monoamine neurotransmitters in extra-hypothalamic areas related to motivated behaviors, learning and locomotion has been the focus of much research. The purpose of this thematic issue is to present the state of art concerning the effects of sex hormones on the neurochemical regulation of dopaminergic midbrain areas involved in neurobiological and pathological processes, such as addiction to drugs of abuse. We also discuss evidence of how neonatal exposure to sex hormones or endocrine disrupting chemicals can produce long-term changes on the neurochemical regulation of dopaminergic neurons in the limbic and midbrain areas.


Assuntos
Androgênios/metabolismo , Encéfalo/fisiologia , Dopamina/fisiologia , Estrogênios/metabolismo , Progestinas/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Humanos
19.
Basic Clin Pharmacol Toxicol ; 114(5): 395-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24314229

RESUMO

Amphetamine derivatives have therapeutic potential in diseases such as attention deficit hyperactivity disorder, narcolepsy and obesity. However, their prolonged use has been associated with cardiovascular toxicity and addiction. In recent years, we have studied the pharmacological effects of amphetamine derivatives such as methylthioamphetamine (MTA) and N,N-dimethyl-thioamphetamine, with the aim of improving their therapeutic selectivity. In this work, we show that similarly to MTA, N,N-dimethyl-thioamphetamine has effects on the dopamine system, producing a significant increase in extracellular levels of dopamine (as measured by in vivo brain microdialysis) and locomotor activity, which is a behavioural measure of dopaminergic activation. However, unlike MTA, N,N-dimethyl- thioamphetamine does not produce aortic contraction in vitro. Our results show that N,N-dimethyl-thioamphetamine is a drug that retains the dopaminergic effects of amphetamine derivatives but exhibits a lower potential for producing cardiovascular side effects.


Assuntos
Anfetaminas/farmacologia , Aorta Torácica/efeitos dos fármacos , Dopamina/metabolismo , Metanfetamina/análogos & derivados , Anfetaminas/toxicidade , Animais , Aorta Torácica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Metanfetamina/farmacologia , Metanfetamina/toxicidade , Microdiálise , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
Behav Brain Res ; 250: 206-10, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685321

RESUMO

The lateral septum (LS) is a brain nucleus associated to stress and drug addiction. Here we show that dopamine extracellular levels in the lateral septum are under the control of corticotrophin releasing factor (CRF). Reverse dialysis of 1µM stressin-1, a type 1 CRF receptor (CRF-R1) agonist, induced a significant increase of LS dopamine extracellular levels in saline-treated rats that was blocked by the co-perfusion of stressin-1 with CP-154526, a specific CRF-R1 antagonist. Repeated cocaine administration (15mg/kg; twice daily for 14 days) suppressed the increase in LS dopamine extracellular levels induced by CRF-R1 activation. This suppression was observed 24h, as well as 21 days after withdrawal from repeated cocaine administration. In addition, depolarization-induced dopamine release in the LS was significantly higher in cocaine-compared to saline-treated rats. Thus, our results show that the activation of CRF-R1 in the LS induces a significant increase in dopamine extracellular levels. Interestingly, repeated cocaine administration induces a long-term suppression of the CRF-R1 mediated dopamine release and a transient increase in dopamine releasability in the LS.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Septo do Cérebro/efeitos dos fármacos , Animais , Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/farmacologia , Esquema de Medicação , Interações Medicamentosas , Masculino , Microdiálise , Peptídeos Cíclicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/agonistas , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA