Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 46(14): 7097-7107, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29860503

RESUMO

The two paralogous zinc finger factors CTCF and CTCFL differ in expression such that CTCF is ubiquitously expressed, whereas CTCFL is found during spermatogenesis and in some cancer types in addition to other cell types. Both factors share the highly conserved DNA binding domain and are bound to DNA sequences with an identical consensus. In contrast, both factors differ substantially in the number of bound sites in the genome. Here, we addressed the molecular features for this binding specificity. In contrast to CTCF we found CTCFL highly enriched at 'open' chromatin marked by H3K27 acetylation, H3K4 di- and trimethylation, H3K79 dimethylation and H3K9 acetylation plus the histone variant H2A.Z. CTCFL is enriched at transcriptional start sites and regions bound by transcription factors. Consequently, genes deregulated by CTCFL are highly cell specific. In addition to a chromatin-driven choice of binding sites, we determined nucleotide positions critical for DNA binding by CTCFL, but not by CTCF.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/química , Humanos , Células K562 , Camundongos , Células NIH 3T3
2.
Nucleic Acids Res ; 45(5): 2384-2395, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27903907

RESUMO

Centrosomal 190 kDa protein (CP190) is a promoter binding factor, mediates long-range interactions in the context of enhancer-promoter contacts and in chromosomal domain formation. All Drosophila insulator proteins bind CP190 suggesting a crucial role in insulator function. CP190 has major effects on chromatin, such as depletion of nucleosomes, high nucleosomal turnover and prevention of heterochromatin expansion. Here, we searched for enzymes, which might be involved in CP190 mediated chromatin changes. Eighty percent of the genomic binding sites of the histone acetyltransferase Gcn5 are colocalizing with CP190 binding. Depletion of CP190 reduces Gcn5 binding to chromatin. Binding dependency was further supported by Gcn5 mediated co-precipitation of CP190. Gcn5 is known to activate transcription by histone acetylation. We used the dCas9 system to target CP190 or Gcn5 to a Polycomb repressed and H3K27me3 marked gene locus. Both, CP190 as well as Gcn5, activate this locus, thus supporting the model that CP190 recruits Gcn5 and thereby activates chromatin.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Ativação Transcricional , Animais , Sítios de Ligação , Células Cultivadas , Drosophila/genética , Drosophila/metabolismo
3.
Genome Res ; 25(1): 89-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342723

RESUMO

Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco , Animais , Sítios de Ligação , Cromatina/metabolismo , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Expressão Gênica , Estudos de Associação Genética , Genômica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
4.
Nucleic Acids Res ; 42(19): 11941-51, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294833

RESUMO

Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Elementos Isolantes , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Metilação , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Dedos de Zinco
5.
Development ; 139(6): 1045-57, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22354838

RESUMO

The genome of higher eukaryotes exhibits a patchwork of inactive and active genes. The nuclear protein CCCTC-binding factor (CTCF) when bound to insulator sequences can prevent undesirable crosstalk between active and inactive genomic regions, and it can also shield particular genes from enhancer function, a role that has many applications in development. Exciting recent work has demonstrated roles for CTCF in, for example, embryonic, neuronal and haematopoietic development. Here, we discuss the underlying mechanisms of developmentally regulated CTCF-dependent transcription in relation to model genes, and highlight genome-wide results indicating that CTCF might play a master role in regulating both activating and repressive transcription events at sites throughout the genome.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Elementos Isolantes/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Drosophila/genética , Elementos Facilitadores Genéticos , Humanos , Fator de Crescimento Insulin-Like II/genética , Camundongos , RNA Longo não Codificante , RNA não Traduzido/genética , Coesinas
6.
Nucleic Acids Res ; 41(5): 3010-21, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23361464

RESUMO

The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here, we show that MBD2-NuRD, in contrast to MBD3-NuRD, converts open chromatin with euchromatic histone modifications into tightly compacted chromatin with repressive histone marks. Genome-wide, a strong enrichment for MBD2 at methylated CpG sequences is found, whereas CpGs bound by MBD3 are devoid of methylation. MBD2-bound genes are generally lower expressed as compared with MBD3-bound genes. When depleting cells for MBD2, the MBD2-bound genes increase their activity, whereas MBD2 plus MBD3-bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes.


Assuntos
Ilhas de CpG , Proteínas de Ligação a DNA/fisiologia , Éxons , Regiões Promotoras Genéticas , Animais , Sítios de Ligação , Linhagem Celular , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Eucromatina/metabolismo , Genoma Humano , Humanos , Ligação Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Transporte Proteico , Ratos , Sítio de Iniciação de Transcrição
7.
EMBO J ; 28(7): 877-88, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19229299

RESUMO

For the compact Drosophila genome, several factors mediating insulator function, such as su(Hw) and dCTCF, have been identified. Recent analyses showed that both these insulator-binding factors are functionally dependent on the same cofactor, CP190. Here we analysed genome-wide binding of CP190 and dCTCF. CP190 binding was detected at CTCF, su(Hw) and GAF sites and unexpectedly at the transcriptional start sites of actively transcribed genes. Both insulator and transcription start site CP190-binding elements are strictly marked by a depletion of histone H3 and, therefore, a loss of nucleosome occupancy. In addition, CP190/dCTCF double occupancy was seen at the borders of many H3K27me3 'islands'. As before, these sites were also depleted of H3. Loss of either dCTCF or CP190 causes an increase of H3 and H3K27 trimethylation at these sites. Thus, for both types of cis-regulatory elements, domain borders and promoters, the chromatin structure is dependent on CP190.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Isolantes/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genoma de Inseto , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional , Coesinas
8.
EMBO J ; 27(21): 2839-50, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18923423

RESUMO

The 11-zinc finger protein CCCTC-binding factor (CTCF) is a highly conserved protein, involved in imprinting, long-range chromatin interactions and transcription. To investigate its function in vivo, we generated mice with a conditional Ctcf knockout allele. Consistent with a previous report, we find that ubiquitous ablation of the Ctcf gene results in early embryonic lethality. Tissue-specific inactivation of CTCF in thymocytes specifically hampers the differentiation of alphabeta T cells and causes accumulation of late double-negative and immature single-positive cells in the thymus of mice. These cells are normally large and actively cycling, and contain elevated amounts of CTCF. In Ctcf knockout animals, however, these cells are small and blocked in the cell cycle due to increased expression of the cyclin-CDK inhibitors p21 and p27. Taken together, our results show that CTCF is required in a dose-dependent manner and is involved in cell cycle progression of alphabeta T cells in the thymus. We propose that CTCF positively regulates cell growth in rapidly dividing thymocytes so that appropriate number of cells are generated before positive and negative selection in the thymus.


Assuntos
Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/citologia , Timo/citologia , Animais , Fator de Ligação a CCCTC , Linhagem da Célula , Proliferação de Células , Tamanho Celular , Proteínas de Ligação a DNA/deficiência , Deleção de Genes , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Marcação de Genes , Genótipo , Humanos , Integrases/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Linfócitos T/enzimologia , Timo/enzimologia
9.
Chromosoma ; 119(4): 351-60, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20174815

RESUMO

More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.


Assuntos
Cromatina/fisiologia , Nucleossomos/fisiologia , Proteínas Repressoras/fisiologia , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/fisiologia , Núcleo Celular/fisiologia , Cromatina/química , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos/fisiologia , Cromossomos Humanos/fisiologia , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Impressão Genômica , Humanos , Inativação do Cromossomo X , Dedos de Zinco/fisiologia , Coesinas
10.
Biochem Cell Biol ; 89(5): 459-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21895576

RESUMO

The zinc-finger protein CTCF was originally identified in the context of gene silencing and gene repression (Baniahmad et al. 1990; Lobanenkov et al. 1990). CTCF was later shown to be involved in several transcriptional mechanisms such as gene activation (Vostrov et al. 2002) and enhancer blocking (Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000; Lutz et al. 2003; Szabó et al. 2000; Tanimoto et al. 2003; Phillips and Corces 2009; Bell et al. 1999; Zlatanova and Caiafa 2009a, 2009b). Insulators block the action of enhancers when positioned between enhancer and promoter. CTCF was found to be required in almost all cases of enhancer blocking tested in vertebrates. This CTCF-mediated enhancer blocking is in many instances conferred by constitutive CTCF action. For some examples however, a modulation of the enhancer blocking activity was documented (Lutz et al. 2003; Weth et al. 2010). One mechanism is achieved by regulation of binding to DNA. It was shown that CTCF is not able to bind to those binding-sites containing methylated CpG sequences. At the imprinting control region (ICR) of the Igf2/H19 locus the binding-site for CTCF on the paternal allele is methylated. This prevents DNA-binding of CTCF, resulting in the loss of enhancer blocking (Bell and Felsenfeld 2000; Chao et al. 2002; Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000, 2002; Szabó et al. 2000; Takai et al. 2001). Not only can DNA methylation interfere with CTCF binding to DNA, it was also shown in one report that RNA transcription through the CTCF binding site results in CTCF eviction (Lefevre et al. 2008). In contrast to these cases most of the DNA sites are not differentially bound by CTCF. Even CTCF interaction with its cofactor cohesin does not seem to differ in different cell types (Schmidt et al. 2010). These results indicate that regulation of CTCF activity might be achieved by neighboring factors bound to DNA. In fact, whole genome analyses of CTCF binding sites identified several classes of neighboring sequences (Dickson et al. 2010; Boyle et al. 2010; Essien et al. 2009). Therefore, in this review we will summarize those results for which a combined action of CTCF with factors bound adjacently was found. These neighboring factors include the RNA polymerases I, II and III, another zinc finger factor VEZF1 and the factors YY1, SMAD, TR and Oct4. Each of these seems to influence, modulate or determine the function of CTCF. Thereby, at least some of the pleiotropic effects of CTCF can be explained.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , RNA Longo não Codificante , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética
11.
Nat Cell Biol ; 23(8): 881-893, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326481

RESUMO

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Genoma , Células-Tronco Pluripotentes/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Mitose , Células-Tronco Embrionárias Murinas , Mutação , Células-Tronco Pluripotentes/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética
12.
PLoS Genet ; 3(7): e112, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17616980

RESUMO

Insulator or enhancer-blocking elements are proposed to play an important role in the regulation of transcription by preventing inappropriate enhancer/promoter interaction. The zinc-finger protein CTCF is well studied in vertebrates as an enhancer blocking factor, but Drosophila CTCF has only been characterised recently. To date only one endogenous binding location for CTCF has been identified in the Drosophila genome, the Fab-8 insulator in the Abdominal-B locus in the Bithorax complex (BX-C). We carried out chromatin immunopurification coupled with genomic microarray analysis to identify CTCF binding sites within representative regions of the Drosophila genome, including the 3-Mb Adh region, the BX-C, and the Antennapedia complex. Location of in vivo CTCF binding within these regions enabled us to construct a robust CTCF binding-site consensus sequence. CTCF binding sites identified in the BX-C map precisely to the known insulator elements Mcp, Fab-6, and Fab-8. Other CTCF binding sites correlate with boundaries of regulatory domains allowing us to locate three additional presumptive insulator elements; "Fab-2," "Fab-3," and "Fab-4." With the exception of Fab-7, our data indicate that CTCF is directly associated with all known or predicted insulators in the BX-C, suggesting that the functioning of these insulators involves a common CTCF-dependent mechanism. Comparison of the locations of the CTCF sites with characterised Polycomb target sites and histone modification provides support for the domain model of BX-C regulation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Sequência Consenso , DNA/genética , DNA/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Genes de Insetos , Genoma de Inseto , Elementos Isolantes , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/genética
13.
Biochim Biophys Acta ; 1783(11): 2161-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18706938

RESUMO

Long-distance chromatin interaction has been proposed and demonstrated for enhancer elements separated from the gene by hundreds or thousands of base pairs. This paved the way for the detection of additional enhancer properties, such as the regulation of interaction, and the contacting of genes in trans on other chromosomes. The outspread arrangement of regulatory elements and transcription units requires insulators to prevent the functional interference of enhancer elements with inappropriate promoters. Apparently, insulators mediate differential chromatin folding to allow or to prevent enhancers from contacting specific promoters. The factor CTCF is often involved in bridging separated chromatin regions. In addition to interchromosomal contacts, intrachromosomal interactions have been demonstrated for genes with a similar regulation, such as active genes, estrogen induced genes and imprinted genes. With more sophisticated and sensitive methods combined with deep sequencing and array technology, a huge number of long range interactions can expected to be characterized in the near future.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Regulação da Expressão Gênica , Animais , Fator de Ligação a CCCTC , Cromatina/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Humanos , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Mol Cell Biol ; 26(12): 4519-28, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16738318

RESUMO

Human p66alpha and p66beta are two potent transcriptional repressors that interact with the methyl-CpG-binding domain proteins MBD2 and MBD3. An analysis of the molecular mechanisms mediating repression resulted in the identification of two major repression domains in p66alpha and one in p66beta. Both p66alpha and p66beta are SUMO-modified in vivo: p66alpha at two sites (Lys-30 and Lys-487) and p66beta at one site (Lys-33). Expression of SUMO1 enhanced the transcriptional repression activity of Gal-p66alpha and Gal-p66beta. Mutation of the SUMO modification sites or using a SUMO1 mutant or a dominant negative Ubc9 ligase resulted in a significant decrease of the transcriptional repression of p66alpha and p66beta. The Mi-2/NuRD components MBD3, RbAp46, RbAp48, and HDAC1 were found to bind to both p66alpha and p66beta in vivo. Most of the interactions were not affected by the SUMO site mutations in p66alpha or p66beta, with two exceptions. HDAC1 binding to p66alpha was lost in the case of a p66alphaK30R mutant, and RbAp46 binding was reduced in the case of a p66betaK33R mutant. These results suggest that interactions within the Mi-2/NuRD complex as well as optimal repression are mediated by SUMOylation.


Assuntos
Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Ilhas de CpG , Metilação de DNA , Histona Desacetilases/química , Histona Desacetilases/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Camundongos , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Transcrição Gênica
15.
Nucleic Acids Res ; 34(2): 397-406, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16415179

RESUMO

The Mi-2/NuRD complex is a multi-subunit protein complex with enzymatic activities involving chromatin remodeling and histone deacetylation. Targeting of Mi-2/NuRD to methylated CpG sequences mediates gene repression. The function of p66alpha and of p66beta within the multiple subunits has not been addressed. Here, we analyzed the in vivo function and binding of both p66-paralogs. Both factors function in synergy, since knocking-down p66alpha affects the repressive function of p66beta and vice versa. Both proteins interact with MBD2 functionally and biochemically. Mutation of a single amino acid of p66alpha abolishes in vivo binding to MBD2 and interferes with MBD2-mediated repression. This loss of binding results in a diffuse nuclear localization in contrast to wild-type p66alpha that shows a speckled nuclear distribution. Furthermore, wild-type subnuclear distribution of p66alpha and p66beta depends on the presence of MBD2. Both proteins interact with the tails of all octamer histones in vitro, and acetylation of histone tails interferes with p66 binding. The conserved region 2 of p66alpha is required for histone tail interaction as well as for wild-type subnuclear distribution. These results suggest a two-interaction forward feedback binding mode, with a stable chromatin association only after deacetylation of the histones has occurred.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Linhagem Celular , Núcleo Celular/química , Proteínas de Ligação a DNA/genética , Inativação Gênica , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Camundongos , Mutação , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética
16.
Mol Cell Biol ; 24(8): 3497-504, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15060168

RESUMO

The differentially methylated imprinting control region (ICR) region upstream of the H19 gene regulates allelic Igf2 expression by means of a methylation-sensitive chromatin insulator function. We have previously shown that maternal inheritance of mutated (three of the four) target sites for the 11-zinc finger protein CTCF leads to loss of Igf2 imprinting. Here we show that a mutation in only CTCF site 4 also leads to robust activation of the maternal Igf2 allele despite a noticeably weaker interaction in vitro of site 4 DNA with CTCF compared to other ICR sites, sites 1 and 3. Moreover, maternally inherited sites 1 to 3 become de novo methylated in complex patterns in subpopulations of liver and heart cells with a mutated site 4, suggesting that the methylation privilege status of the maternal H19 ICR allele requires an interdependence between all four CTCF sites. In support of this conclusion, we show that CTCF molecules bind to each other both in vivo and in vitro, and we demonstrate strong interaction between two CTCF-DNA complexes, preassembled in vitro with sites 3 and 4. We propose that the CTCF sites may cooperate to jointly maintain both methylation-free status and insulator properties of the maternal H19 ICR allele. Considering many other CTCF targets, we propose that site-specific interactions between various DNA-bound CTCF molecules may provide general focal points in the organization of looped chromatin domains involved in gene regulation.


Assuntos
Proteínas de Ligação a DNA/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Mutação , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Metilação , Camundongos , Ligação Proteica , RNA Longo não Codificante , Proteínas Repressoras/metabolismo
17.
Epigenetics Chromatin ; 10: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680483

RESUMO

BACKGROUND: Chromatin insulators shield promoters and chromatin domains from neighboring enhancers or chromatin regions with opposing activities. Insulator-binding proteins and their cofactors mediate the boundary function. In general, covalent modification of proteins by the small ubiquitin-like modifier (SUMO) is an important mechanism to control the interaction of proteins within complexes. RESULTS: Here we addressed the impact of dSUMO in respect of insulator function, chromatin binding of insulator factors and formation of insulator speckles in Drosophila. SUMOylation augments the enhancer blocking function of four different insulator sequences and increases the genome-wide binding of the insulator cofactor CP190. CONCLUSIONS: These results indicate that enhanced chromatin binding of SUMOylated CP190 causes fusion of insulator speckles, which may allow for more efficient insulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Elementos Facilitadores Genéticos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sumoilação , Animais , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Elementos Isolantes , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Repressoras/genética
18.
Curr Opin Genet Dev ; 37: 17-26, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26802288

RESUMO

The genomic organization into active and inactive chromatin domains imposes specific requirements for having domain boundaries to prohibit interference between the opposing activities of neighbouring domains. These boundaries provide an insulator function by binding architectural proteins that mediate long-range interactions. Among these, CTCF plays a prominent role in establishing chromatin loops (between pairs of CTCF binding sites) through recruiting cohesin. CTCF-mediated long-range interactions are integral for a multitude of topological features of interphase chromatin, such as the formation of topologically associated domains, domain insulation, enhancer blocking and even enhancer function.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Regulação da Expressão Gênica , Elementos Isolantes/genética , Proteínas Repressoras/genética , Sítios de Ligação , Fator de Ligação a CCCTC , Cromatina/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Humanos , Ligação Proteica , Coesinas
19.
Biol Open ; 5(9): 1266-74, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27464669

RESUMO

Nuclear foci of chromatin binding factors are, in many cases, discussed as sites of long-range chromatin interaction in the three-dimensional nuclear space. Insulator binding proteins have been shown to aggregate into insulator bodies, which are large structures not involved in insulation; however, the more diffusely distributed insulator speckles have not been analysed in this respect. Furthermore, insulator binding proteins have been shown to drive binding sites for Polycomb group proteins into Polycomb bodies. Here we find that insulator speckles, marked by the insulator binding protein dCTCF, and Polycomb bodies show differential association with the insulator protein CP190. They differ in number and three-dimensional location with only 26% of the Polycomb bodies overlapping with CP190. By using fluorescence in situ hybridization (FISH) probes to identify long-range interaction (kissing) of the Hox gene clusters Antennapedia complex (ANT-C) and Bithorax complex (BX-C), we found the frequency of interaction to be very low. However, these rare kissing events were associated with insulator speckles at a significantly shorter distance and an increased speckle number. This suggests that insulator speckles are associated with long-distance interaction.

20.
Mech Dev ; 113(1): 95-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11900981

RESUMO

The zinc finger protein CTCF has been shown to mediate multiple functions connected to gene repression. Transcriptional inhibition as well as enhancer blocking and chromatin insulation are documented for CTCF in men, mice and chickens. Additionally, hCTCF has been linked to epigenetics and disease. In line with these basic cellular functions, CTCF has been found to be expressed in every cell type and adult tissue tested and has thus been deemed an ubiquitous protein. Here, we report the identification of the CTCF homologue from Xenopus and the analysis of the spatio-temporal expression of xCTCF during embryogenesis. Within the DNA binding domain, xCTCF is virtually identical to other identified vertebrate CTCF proteins. Homology also extends to other conserved regions that are important for CTCF function. Although xCTCF mRNA is present during all stages of early Xenopus development, a remarkable increase in expression is observed in neuronal tissues. Early in development, xCTCF is highly expressed in the neural plate and later in the neural tube and developing brain. By tailbud stage, elevated expression is also seen in the developing sensory organs of the head. This is the first detailed description of the expression pattern of a vertebrate insulator protein during embryogenesis.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas Repressoras , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Fator de Ligação a CCCTC , Clonagem Molecular , DNA Complementar/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Crista Neural/embriologia , Crista Neural/metabolismo , Neurônios/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Xenopus , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA