Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(W1): W244-50, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25878035

RESUMO

Molecular profiling experiments have become standard in current wet-lab practices. Classically, enrichment analysis has been used to identify biological functions related to these experimental results. Combining molecular profiling results with the wealth of currently available interactomics data, however, offers the opportunity to identify the molecular mechanism behind an observed molecular phenotype. In this paper, we therefore introduce 'PheNetic', a user-friendly web server for inferring a sub-network based on probabilistic logical querying. PheNetic extracts from an interactome, the sub-network that best explains genes prioritized through a molecular profiling experiment. Depending on its run mode, PheNetic searches either for a regulatory mechanism that gave explains to the observed molecular phenotype or for the pathways (in)activated in the molecular phenotype. The web server provides access to a large number of interactomes, making sub-network inference readily applicable to a wide variety of organisms. The inferred sub-networks can be interactively visualized in the browser. PheNetic's method and use are illustrated using an example analysis of differential expression results of ampicillin treated Escherichia coli cells. The PheNetic web service is available at http://bioinformatics.intec.ugent.be/phenetic/.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Software , Escherichia coli/genética , Internet , Mapeamento de Interação de Proteínas
2.
Mol Biosyst ; 9(7): 1594-603, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23591551

RESUMO

At the present time, omics experiments are commonly used in wet lab practice to identify leads involved in interesting phenotypes. These omics experiments often result in unstructured gene lists, the interpretation of which in terms of pathways or the mode of action is challenging. To aid in the interpretation of such gene lists, we developed PheNetic, a decision theoretic method that exploits publicly available information, captured in a comprehensive interaction network to obtain a mechanistic view of the listed genes. PheNetic selects from an interaction network the sub-networks highlighted by these gene lists. We applied PheNetic to an Escherichia coli interaction network to reanalyse a previously published KO compendium, assessing gene expression of 27 E. coli knock-out mutants under mild acidic conditions. Being able to unveil previously described mechanisms involved in acid resistance demonstrated both the performance of our method and the added value of our integrated E. coli network. PheNetic is available at .


Assuntos
Biologia Computacional/métodos , Escherichia coli/genética , Redes Reguladoras de Genes , Software , Algoritmos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA