Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Protein Expr Purif ; 106: 25-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448827

RESUMO

Helicobacter pylori is a pathogenic bacterium that has the remarkable ability to withstand the harsh conditions of the stomach for decades. This is achieved through unique evolutionary adaptations, which include binding Lewis(b) antigens found on the gastric epithelium using the outer membrane protein BabA. We show here the yield of a recombinant form of BabA, comprising its putative extracellular binding domain, can be significantly increased through the addition of a hexa-lysine tag to the C-terminus of the protein. BabA was expressed in the periplasmic space of Escherichia coli and purified using immobilised metal ion affinity and size exclusion chromatography - yielding approximately 1.8 mg of protein per litre of culture. The hexa-lysine tag does not inhibit the binding activity of BabA as the recombinant protein was found to possess affinity towards HSA-Lewis(b) glycoconjugates.


Assuntos
Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/metabolismo , Bioquímica/métodos , Lisina/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Adesinas Bacterianas/química , Sequência de Aminoácidos , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Helicobacter pylori , Espectrometria de Massas , Dados de Sequência Molecular , Periplasma/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Corantes de Rosanilina/metabolismo
2.
MAbs ; 10(1): 104-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28952876

RESUMO

C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.


Assuntos
Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Complemento C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptores de Quimiocinas/antagonistas & inibidores , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Complemento C5a/química , Complemento C5a/imunologia , Complemento C5a/metabolismo , Mapeamento de Epitopos/métodos , Epitopos , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Quimiocinas/química , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Relação Estrutura-Atividade
3.
ACS Chem Biol ; 12(12): 3113-3125, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29131570

RESUMO

The ubiquitin proteasome system is widely postulated to be a new and important field of drug discovery for the future, with the ubiquitin specific proteases (USPs) representing one of the more attractive target classes within the area. Many USPs have been linked to critical axes for therapeutic intervention, and the finding that USP28 is required for c-Myc stability suggests that USP28 inhibition may represent a novel approach to targeting this so far undruggable oncogene. Here, we describe the discovery of the first reported inhibitors of USP28, which we demonstrate are able to bind to and inhibit USP28, and while displaying a dual activity against the closest homologue USP25, these inhibitors show a high degree of selectivity over other deubiquitinases (DUBs). The utility of these compounds as valuable probes to investigate and further explore cellular DUB biology is highlighted by the demonstration of target engagement against both USP25 and USP28 in cells. Furthermore, we demonstrate that these inhibitors are able to elicit modulation of both the total levels and the half-life of the c-Myc oncoprotein in cells and also induce apoptosis and loss of cell viability in a range of cancer cell lines. We however observed a narrow therapeutic index compared to a panel of tissue-matched normal cell lines. Thus, it is hoped that these probes and data presented herein will further advance our understanding of the biology and tractability of DUBs as potential future therapeutic targets.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Células HCT116 , Humanos
4.
Biomol NMR Assign ; 10(1): 207-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878853

RESUMO

Plant homeodomains (PHD) and Bromo domains are both chromatin reader domains that recognise histone methylation degree and acetylation state, respectively. The tripartite motif protein TRIM24 is a multidomain protein carrying a PHD-Bromo motif at its C-terminus, through which it is able to bind to histone 3 (H3) N-terminal tails with a specific modification pattern, namely unmethylated at K4 and acetylated at K23 (H3-K4me0K23ac). Here we report the 1H, 13C and 15N backbone resonance assignment of this 23 kDa motif, which we have obtained by heteronuclear multidimensional NMR spectroscopy. Furthermore we show that the secondary Cα and Cß chemical shifts are in good agreement with a previously published crystal structure.


Assuntos
Cromatina/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
5.
Oncotarget ; 7(34): 54120-54136, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27472462

RESUMO

Although endocrine therapy is successfully used to treat patients with estrogen receptor (ER) positive breast cancer, a substantial proportion of this population will relapse. Several mechanisms of acquired resistance have been described including activation of the mTOR pathway, increased activity of CDK4 and activating mutations in ER. Using a patient derived xenograft model harboring a common activating ER ligand binding domain mutation (D538G), we evaluated several combinatorial strategies using the selective estrogen receptor degrader (SERD) fulvestrant in combination with chromatin modifying agents, and CDK4/6 and mTOR inhibitors. In this model, fulvestrant binds WT and MT ER, reduces ER protein levels, and downregulated ER target gene expression. Addition of JQ1 or vorinostat to fulvestrant resulted in tumor regression (41% and 22% regression, respectively) though no efficacy was seen when either agent was given alone. Interestingly, although the CDK4/6 inhibitor palbociclib and mTOR inhibitor everolimus were efficacious as monotherapies, long-term delayed tumor growth was only observed when co-administered with fulvestrant. This observation was consistent with a greater inhibition of compensatory signaling when palbociclib and everolimus were co-dosed with fulvestrant. The addition of fulvestrant to JQ1, vorinostat, everolimus and palbociclib also significantly reduced lung metastatic burden as compared to monotherapy. The combination potential of fulvestrant with palbociclib or everolimus were confirmed in an MCF7 CRISPR model harboring the Y537S ER activating mutation. Taken together, these data suggest that fulvestrant may have an important role in the treatment of ER positive breast cancer with acquired ER mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Mutação , Receptores de Estrogênio/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Everolimo/administração & dosagem , Feminino , Fulvestranto , Humanos , Células MCF-7 , Camundongos , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Receptores de Estrogênio/análise , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Med Chem ; 58(11): 4790-801, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25977981

RESUMO

The RAS/RAF/MEK/ERK signaling pathway has been targeted with a number of small molecule inhibitors in oncology clinical development across multiple disease indications. Importantly, cell lines with acquired resistance to B-RAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition by small molecule inhibitors. There are a number of selective, noncovalent ERK1/2 inhibitors reported along with the promiscuous hypothemycin (and related analogues) that act via a covalent mechanism of action. This article reports the identification of multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD). As a starting point for these covalent inhibitors, reported ERK1/2 inhibitors and a chemical series identified via high-throughput screening were exploited. These approaches resulted in the identification of selective covalent tool compounds for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway through such a mechanism of action.


Assuntos
Desenho de Fármacos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
7.
Biosci Rep ; 33(4)2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23863106

RESUMO

TNFα (tumour necrosis factor α) is an early mediator in the systemic inflammatory response to infection and is therefore a therapeutic target in sepsis. AZD9773 is an ovine-derived, polyclonal anti-TNFα Fab fragment derived from a pool of serum and currently being developed as a treatment for severe sepsis and septic shock. In the present study, we show that although AZD9773 has a modest affinity for TNFα in a binding assay, the Ki in a cell-based assay is approximately four orders of magnitude lower. We show using SEC (size exclusion chromatography) that the maximum size of the complex between AZD9773 and TNFα is consistent with approximately 12 Fabs binding to one TNFα trimer. A number of approaches were taken to map the epitopes recognized by AZD9773. These revealed that a number of different regions on TNFα are involved in binding to the polyclonal Fab. The data suggest that there are probably three epitopes per monomer that are responsible for most of the inhibition by AZD9773 and that all three can be occupied at the same time in the complex. We conclude that AZD9773 is clearly demonstrated to bind to multiple epitopes on TNFα and suggest that the polyclonal nature may account, at least in part, for the very high potency observed in cell-based assays.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fator de Necrose Tumoral alfa/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Camundongos , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Carneiro Doméstico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
FEBS Lett ; 584(14): 3035-41, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20515689

RESUMO

MDM2 and MDM4 are proteins involved in regulating the tumour suppressor p53. MDM2/4 and p53 interact through their N-terminal domains and disrupting this interaction is a potential anticancer strategy. The MDM2-p53 interaction is structurally and biophysically well characterised, whereas equivalent studies on MDM4 are hampered by aggregation of the protein. Here we present the NMR characterization of MDM4 (14-111) both free and in complexes with peptide and small-molecule ligands. MDM4 is more dynamic in its apo state than is MDM2, with parts of the protein being unstructured. These regions become structured upon binding of a ligand. MDM4 appears to bind its ligand through conformational selection and/or an induced fit mechanism; this might influence rational design of MDM4 inhibitors.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Humanos , Ligantes , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA