Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971210

RESUMO

Recent studies have demonstrated the impact of pro-inflammatory signaling and reactive microglia/macrophages on the formation of Müller glial-derived progenitor cells (MGPCs) in the retina. In chick retina, ablation of microglia/macrophages prevents the formation of MGPCs. Analyses of single-cell RNA-sequencing chick retinal libraries revealed that quiescent and activated microglia/macrophages have a significant impact upon the transcriptomic profile of Müller glia (MG). In damaged monocyte-depleted retinas, MG fail to upregulate genes related to different cell signaling pathways, including those related to Wnt, heparin-binding epidermal growth factor (HBEGF), fibroblast growth factor (FGF) and retinoic acid receptors. Inhibition of GSK3ß, to simulate Wnt signaling, failed to rescue the deficit in MGPC formation, whereas application of HBEGF or FGF2 completely rescued the formation of MGPCs in monocyte-depleted retinas. Inhibition of Smad3 or activation of retinoic acid receptors partially rescued the formation of MGPCs in monocyte-depleted retinas. We conclude that signals produced by reactive microglia/macrophages in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFß/Smad3 to promote the reprogramming of MG into proliferating MGPCs.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Microglia , Animais , Microglia/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neuroglia/metabolismo , Células Ependimogliais/metabolismo , Células-Tronco , Galinhas , Retina/metabolismo , Macrófagos , Via de Sinalização Wnt , Receptores do Ácido Retinoico/metabolismo , Família de Proteínas EGF/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Proliferação de Células/genética
2.
Glia ; 69(10): 2503-2521, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231253

RESUMO

Endocannabinoids (eCB) are lipid-based neurotransmitters that are known to influence synaptic function in the visual system. eCBs are also known to suppress neuroinflammation in different pathological states. However, nothing is known about the roles of the eCB system during the transition of Müller glia (MG) into proliferating progenitor-like cells in the retina. Accordingly, we used the chick and mouse model to characterize expression patterns of eCB-related genes and applied pharmacological agents to investigate how the eCB system impacts glial reactivity and the capacity of MG to become Müller glia-derived progenitor cells (MGPCs). We queried single cell RNA-seq libraries to identify eCB-related genes and identify cells with dynamic patterns of expression in damaged retinas. MG and inner retinal neurons expressed the eCB receptor CNR1, as well as enzymes involved in eCB metabolism. In the chick, intraocular injections of cannabinoids, 2-Arachidonoylglycerol (2-AG) and Anandamide (AEA), stimulated the formation of MGPCs. Cannabinoid Receptor 1 (CNR1)-agonists and Monoglyceride Lipase-inhibitor promoted the formation of MGPCs, whereas CNR1-antagonist and inhibitors of eCB synthesis suppressed this process. In damaged mouse retinas where MG activate NFkB-signaling, activation of CNR1 decreased and inhibition of CNR1 increased NFkB, whereas levels of neuronal cell death were unaffected. Surprisingly, retinal microglia were largely unaffected by increases or decreases in eCB-signaling in both chick and mouse retinas. We conclude that the eCB system in the retina influences the reactivity of MG and the formation of proliferating MGPCs, but does not influence the reactivity of immune cells in the retina.


Assuntos
Canabinoides , Células-Tronco , Animais , Proliferação de Células/fisiologia , Células Ependimogliais/metabolismo , Camundongos , Neuroglia/metabolismo , Retina/metabolismo , Células-Tronco/metabolismo
3.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333380

RESUMO

Recent studies have demonstrated the complex coordination of pro-inflammatory signaling and reactive microglia/macrophage on the formation Müller glial-derived progenitor cells (MGPCs) in the retinas of fish, birds and mice. We generated scRNA-seq libraries to identify transcriptional changes in Müller glia (MG) that result from the depletion of microglia from the chick retina. We found significant changes in different networks of genes in MG in normal and damaged retinas when the microglia are ablated. We identified a failure of MG to upregulate Wnt-ligands, Heparin binding epidermal growth factor (HBEGF), Fibroblast growth factor (FGF), retinoic acid receptors and genes related to Notch-signaling. Inhibition of GSK3ß, to simulate Wnt-signaling, failed to rescue the deficit in formation of proliferating MGPCs in damaged retinas missing microglia. By comparison, application of HBEGF or FGF2 completely rescued the formation of proliferating MGPCs in microglia-depleted retinas. Similarly, injection of a small molecule inhibitor to Smad3 or agonist to retinoic acid receptors partially rescued the formation of proliferating MGPCs in microglia-depleted damaged retinas. According to scRNA-seq libraries, patterns of expression of ligands, receptors, signal transducers and/or processing enzymes to cell-signaling via HBEGF, FGF, retinoic acid and TGFß are rapidly and transiently upregulated by MG after neuronal damage, consistent with important roles for these cell-signaling pathways in regulating the formation of MGPCs. We conclude that quiescent and activated microglia have a significant impact upon the transcriptomic profile of MG. We conclude that signals produced by reactive microglia in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFß/Smad3 to promote the reprogramming on MG into proliferating MGPCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA