Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
BMC Biotechnol ; 7: 57, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17854504

RESUMO

BACKGROUND: The interpretability of microarray data can be affected by sample quality. To systematically explore how RNA quality affects microarray assay performance, a set of rat liver RNA samples with a progressive change in RNA integrity was generated by thawing frozen tissue or by ex vivo incubation of fresh tissue over a time course. RESULTS: Incubation of tissue at 37 degrees C for several hours had little effect on RNA integrity, but did induce changes in the transcript levels of stress response genes and immune cell markers. In contrast, thawing of tissue led to a rapid loss of RNA integrity. Probe sets identified as most sensitive to RNA degradation tended to be located more than 1000 nucleotides upstream of their transcription termini, similar to the positioning of control probe sets used to assess sample quality on Affymetrix GeneChip(R) arrays. Samples with RNA integrity numbers less than or equal to 7 showed a significant increase in false positives relative to undegraded liver RNA and a reduction in the detection of true positives among probe sets most sensitive to sample integrity for in silico modeled changes of 1.5-, 2-, and 4-fold. CONCLUSION: Although moderate levels of RNA degradation are tolerated by microarrays with 3'-biased probe selection designs, in this study we identify a threshold beyond which decreased specificity and sensitivity can be observed that closely correlates with average target length. These results highlight the value of annotating microarray data with metrics that capture important aspects of sample quality.


Assuntos
Fígado/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/genética , Animais , Perfilação da Expressão Gênica , Masculino , RNA/química , RNA/metabolismo , Estabilidade de RNA , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos
3.
Bioinformatics ; 22(17): 2122-8, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16845142

RESUMO

MOTIVATION: The identification of signatures of positive selection can provide important insights into recent evolutionary history in human populations. Current methods mostly rely on allele frequency determination or focus on one or a small number of candidate chromosomal regions per study. With the availability of large-scale genotype data, efficient approaches for an unbiased whole genome scan are becoming necessary. METHODS: We have developed a new method, the whole genome long-range haplotype test (WGLRH), which uses genome-wide distributions to test for recent positive selection. Adapted from the long-range haplotype (LRH) test, the WGLRH test uses patterns of linkage disequilibrium (LD) to identify regions with extremely low historic recombination. Common haplotypes with significantly longer than expected ranges of LD given their frequencies are identified as putative signatures of recent positive selection. In addition, we have also determined the ancestral alleles of SNPs by genotyping chimpanzee and gorilla DNA, and have identified SNPs where the non-ancestral alleles have risen to extremely high frequencies in human populations, termed 'flipped SNPs'. Combining the haplotype test and the flipped SNPs determination, the WGLRH test serves as an unbiased genome-wide screen for regions under putative selection, and is potentially applicable to the study of other human populations. RESULTS: Using WGLRH and high-density oligonucleotide arrays interrogating 116 204 SNPs, we rapidly identified putative regions of positive selection in three populations (Asian, Caucasian, African-American), and extended these observations to a fourth population, Yoruba, with data obtained from the International HapMap consortium. We mapped significant regions to annotated genes. While some regions overlap with genes previously suggested to be under positive selection, many of the genes have not been previously implicated in natural selection and offer intriguing possibilities for further study. AVAILABILITY: the programs for the WGLRH algorithm are freely available and can be downloaded at http://www.affymetrix.com/support/supplement/WGLRH_program.zip.


Assuntos
Evolução Biológica , Mapeamento Cromossômico/métodos , Variação Genética/genética , Genética Populacional , Genoma Humano/genética , Impressão Genômica/genética , Seleção Genética , Algoritmos , Animais , Evolução Molecular , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Software
4.
Toxicol In Vitro ; 21(8): 1513-29, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17720352

RESUMO

Exposure to arsenic causes cancer by inducing a variety of responses that affect the expression of genes associated with numerous biological pathways leading to altered cell growth and proliferation, signaling, apoptosis and oxidative stress response. Affymetrix GeneChip arrays were used to detect gene expression changes following dimethylarsinic acid (DMA) exposure to human bladder cells (UROtsa) or rat bladder cells (MYP3) and rat bladder epithelium in vivo at comparable doses. Using different experimental models coupled with transcriptional profiling allowed investigation of the correlation of mechanisms of DMA-induced toxicity between in vitro and in vivo treatment and across species. Our observations suggest that DMA-induced gene expression in UROtsa cells is distinct from that observed in the MYP3 cells. Principal component analysis shows a more distinct separation by treatment and dose in MYP3 cells as compared to UROtsa cells. However, at the level of pathways and biological networks, DMA affects both common and unique processes in the bladder transitional cells of human and rats. Twelve pathways were found common between human in vitro, rat in vitro and rat in vivo systems. These included signaling pathways involved in adhesion, cellular growth and differentiation. Fifty-five genes found to be commonly expressed between rat in vivo and rat in vitro systems were involved in diverse functions such as cell cycle regulation, lipid metabolism and protein degradation. Many of the genes, processes and pathways have previously been associated with arsenic-induced toxicity. Our finding reiterates and also identifies new biological processes that might provide more information regarding the mechanisms of DMA-induced toxicity. The results of our analysis further suggest that gene expression profiles can address pertinent issues of relevance to risk assessment, namely interspecies extrapolation of mechanistic information as well as comparison of in vitro to in vivo response.


Assuntos
Arsênio/toxicidade , Neoplasias da Bexiga Urinária/induzido quimicamente , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Componente Principal , Ratos , Ratos Endogâmicos F344 , Neoplasias da Bexiga Urinária/metabolismo
5.
Nucleic Acids Res ; 33(22): e187, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16377776

RESUMO

The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species.


Assuntos
Perfilação da Expressão Gênica/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , RNA Mensageiro/normas , Animais , Perfilação da Expressão Gênica/métodos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Distribuição Tecidual
6.
Cancer Chemother Pharmacol ; 66(2): 303-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19915844

RESUMO

PURPOSE: The antineoplastic anthracycline doxorubicin can induce a dose-dependent cardiomyopathy that limits the total cumulative dose prescribed to cancer patients. In both preclinical and clinical studies, pretreatment with dexrazoxane, an intracellular iron chelator, partially protects against anthracycline-induced cardiomyopathy. To identify potential additional cardioprotective treatment strategies, we investigated early doxorubicin-induced changes in cardiac gene expression. METHODS: Spontaneously hypertensive male rats (n = 47) received weekly intravenous injections of doxorubicin (3 mg/kg) or saline 30 min after pretreatment with dexrazoxane (50 mg/kg) or saline by intraperitoneal injection. Cardiac samples were analyzed 24 h after the first (n = 20), second (n = 13), or third (n = 14) intravenous injection on days 1, 8, or 15 of the study, respectively. RESULTS: Rats receiving three doses of doxorubicin had minimal myocardial alterations that were attenuated by dexrazoxane. Cardiac expression levels of genes associated with the Nrf2-mediated stress response were increased after a single dose of doxorubicin, but not affected by cardioprotectant pretreatment. In contrast, an early repressive effect of doxorubicin on transcript levels of genes associated with mitochondrial function was attenuated by dexrazoxane pretreatment. Dexrazoxane had little effect on gene expression by itself. CONCLUSIONS: Genomic analysis provided further evidence that mitochondria are the primary target of doxorubicin-induced oxidative damage that leads to cardiomyopathy and the primary site of cardioprotective action by dexrazoxane. Additional strategies that prevent the formation of oxygen radicals by doxorubicin in mitochondria may provide increased cardioprotection.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Cardiopatias , Miocárdio , Animais , Masculino , Ratos , Antibióticos Antineoplásicos/toxicidade , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Doxorrubicina/toxicidade , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Endogâmicos SHR , Razoxano/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Troponina T/sangue , Troponina T/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética
7.
Hepatology ; 41(1): 177-86, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15619227

RESUMO

Idiosyncratic drug toxicity, defined as toxicity that is dose independent, host dependent, and usually cannot be predicted during preclinical or early phases of clinical trials, is a particularly confounding complication of drug development. An understanding of the mechanisms that lead to idiosyncratic liver toxicity would be extremely beneficial for the development of new compounds. We used microarray analysis on isolated human hepatocytes to understand the mechanisms underlying the idiosyncratic toxicity induced by trovafloxacin. Our results clearly distinguish trovafloxacin from other marketed quinolone agents and identify unique gene changes induced by trovafloxacin that are involved in mitochondrial damage, RNA processing, transcription, and inflammation that may suggest a mechanism for the hepatotoxicity induced by this agent. In conclusion, this work establishes the basis for future microarray analysis of new compounds to determine the presence of these expression changes and their usefulness in predicting idiosyncratic hepatotoxicity. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience. Wiley.com/jpages/0270-9139/suppmat/index.htnd).


Assuntos
Fluoroquinolonas/intoxicação , Hepatócitos/efeitos dos fármacos , Análise em Microsséries , Naftiridinas/intoxicação , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas , Expressão Gênica/efeitos dos fármacos , Glutationa/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , RNA/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA