Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(12): e2307515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946585

RESUMO

Lithium dendrites belong to the key challenges of solid-state battery research. They are unavoidable due to the imperfect nature of surfaces containing defects of a critical size that can be filled by lithium until fracturing the solid electrolyte. The penetration of Li metal occurs along the propagating crack until a short circuit takes place. It is hypothesized that ion implantation can be used to introduce stress states into Li6.4La3Zr1.4Ta0.6O12 which enables an effective deflection and arrest of dendrites. The compositional and microstructural changes associated with the implantation of Ag-ions are studied via atom probe tomography, electron microscopy, and nano X-ray diffraction indicating that Ag-ions can be implanted up to 1 µm deep and amorphization takes place down to 650-700 nm, in good agreement with kinetic Monte Carlo simulations. Based on diffraction results pronounced stress states up to -700 MPa are generated in the near-surface region. Such a stress zone and the associated microstructural alterations exhibit the ability to not only deflect mechanically introduced cracks but also dendrites, as demonstrated by nano-indentation and galvanostatic cycling experiments with subsequent electron microscopy observations. These results demonstrate ion implantation as a viable technique to design "dendrite-free" solid-state electrolytes for high-power and energy-dense solid-state batteries.

2.
Inorg Chem ; 55(23): 12211-12219, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934443

RESUMO

Li oxide garnets are among the most promising candidates for solid-state electrolytes in novel Li ion and Li metal based battery concepts. Cubic Li7La3Zr2O12 stabilized by a partial substitution of Zr4+ by Bi5+ has not been the focus of research yet, despite the fact that Bi5+ would be a cost-effective alternative to other stabilizing cations such as Nb5+ and Ta5+. In this study, Li7-xLa3Zr2-xBixO12 (x = 0.10, 0.20, ..., 1.00) was prepared by a low-temperature solid-state synthesis route. The samples have been characterized by a rich portfolio of techniques, including scanning electron microscopy, X-ray powder diffraction, neutron powder diffraction, Raman spectroscopy, and 7Li NMR spectroscopy. Pure-phase cubic garnet samples were obtained for x ≥ 0.20. The introduction of Bi5+ leads to an increase in the unit-cell parameters. Samples are sensitive to air, which causes the formation of LiOH and Li2CO3 and the protonation of the garnet phase, leading to a further increase in the unit-cell parameters. The incorporation of Bi5+ on the octahedral 16a site was confirmed by Raman spectroscopy. 7Li NMR spectroscopy shows that fast Li ion dynamics are only observed for samples with high Bi5+ contents.

3.
Inorg Chem ; 54(21): 10440-9, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26452048

RESUMO

Cubic Li7La3Zr2O12 (LLZO) garnets are exceptionally well suited to be used as solid electrolytes or protecting layers in "Beyond Li-ion Battery" concepts. Unfortunately, cubic LLZO is not stable at room temperature (RT) and has to be stabilized by supervalent dopants. In this study we demonstrate a new possibility to stabilize the cubic phase at RT via substitution of Zr(4+) by Mo(6+). A Mo(6+) content of 0.25 per formula unit (pfu) stabilizes the cubic LLZO phase, and the solubility limit is about 0.3 Mo(6+) pfu. Based on the results of neutron powder diffraction and Raman spectroscopy, Mo(6+) is located at the octahedrally coordinated 16a site of the cubic garnet structure (space group Ia-3d). Since Mo(6+) has a smaller ionic radius compared to Zr(4+) the lattice parameter a0 decreases almost linearly as a function of the Mo(6+) content. The highest bulk Li-ion conductivity is found for the 0.25 pfu composition, with a typical RT value of 3.4 × 10(-4) S cm(-1). An additional significant resistive contribution originating from the sample interior (most probably from grain boundaries) could be identified in impedance spectra. The latter strongly depends on the prehistory and increases significantly after annealing at 700 °C in ambient air. Cyclic voltammetry experiments on cells containing Mo(6+) substituted LLZO indicate that the material is stable up to 6 V.

4.
Inorg Chem ; 53(12): 6264-9, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24874559

RESUMO

Fast-conducting phase-pure cubic Ga-bearing Li7La3Zr2O12 was obtained using solid-state synthesis methods with 0.08 to 0.52 Ga(3+) pfu in the garnet. An upper limit of 0.72 Ga(3+) pfu in garnet was obtained, but the synthesis was accompanied by small amounts of La2Zr2O12 and LiGaO3. The synthetic products were characterized by X-ray powder diffraction, electron microprobe and SEM analyses, ICP-OES measurements, and (71)Ga MAS NMR spectroscopy. The unit-cell parameter, a0, of the various garnets does not vary significantly as a function of Ga(3+) content, with a value of about 12.984(4) Å. Full chemical analyses for the solid solutions were obtained giving: Li7.08Ga0.06La2.93Zr2.02O12, Li6.50Ga0.15La2.96Zr2.05O12, Li6.48Ga0.23La2.93Zr2.04O12, Li5.93Ga0.36La2.94Zr2.01O12, Li5.38Ga0.53La2.96Zr1.99O12, Li4.82Ga0.60La2.96Zr2.00O12, and Li4.53Ga0.72La2.94Zr1.98O12. The NMR spectra are interpreted as indicating that Ga(3+) mainly occurs in a distorted 4-fold coordinated environment that probably corresponds to the general 96h crystallographic site of garnet.

5.
Nat Commun ; 15(1): 8207, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294112

RESUMO

Lithium dendrite growth in inorganic solid-state electrolytes acts as a main stumbling block for the commercial development of all-solid-state lithium batteries. Indeed, Li dendrites often lead to solid-state electrolyte fractures, undermining device integrity and safety. Despite the significance of these issues, the mechanisms driving the solid-state electrolyte fracture process at the microscopic level remain poorly understood. Here, via operando optical and ex situ dark field X-ray microscopy measurements of LiSn∣single-crystal Li6.5La3Zr1.5Ta0.5O12∣LiSn symmetric cells, we provide insights into solid-state electrolyte strain patterns and lattice orientation changes associated with dendrite growth. We report the observation of dislocations in the immediate vicinity of dendrite tips, including one instance where a dislocation is anchored directly to a tip. This latter occurrence in single-crystalline ceramics suggests an interplay between dendrite proliferation and dislocation formation. We speculate that the mechanical stress induced by dendrite expansion triggers dislocation generation. These dislocations seem to influence the fracture process, potentially affecting the directional growth and branching observed in lithium dendrites.

6.
Chem Mater ; 36(12): 6017-6026, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947979

RESUMO

Li6PS5Cl has attracted significant attention due to its high Li-ion conductivity and processability, facilitating large-scale solid-state battery applications. However, when paired with high-voltage cathodes, it experiences adverse side reactions. Li3InCl6 (LIC), known for its higher stability at high voltages and moderate Li-ion conductivity, is considered a catholyte to address the limitations of Li6PS5Cl. To extend the stability of Li6PS5Cl toward LiNi0.8Co0.15Al0.05O2 (NCA), we applied nanocrystalline LIC as a 180 nm-thick protective coating in a core-shell-like fashion (LIC@NCA) via mechanofusion. Solid-state batteries with LIC@NCA allow an initial discharge specific capacity of 148 mA h/g at 0.1C and 80% capacity retention for 200 cycles at 0.2C with a cutoff voltage of 4.2 V (vs Li/Li+), while cells without LIC coating suffers from low initial discharge capacity and poor retention. Using a wide spectrum of advanced characterization techniques, such as operando XRD, XPS, FIB-SEM, and TOF-SIMS, we reveal that the superior performance of solid-state batteries employing LIC@NCA is related to the suppression of detrimental interfacial reactions of NCA with Li6PS5Cl, delamination, and particle cracking compared to uncoated NCA.

7.
Inorg Chem ; 52(14): 8005-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23790055

RESUMO

Nominal Li7La3Zr2O12 (LLZO) garnet, doped with (57)Fe2O3, was synthesized by sintering oxides and carbonates at T = 1100 °C in air. X-ray powder diffraction measurements show that Li(7-3x)Fe(3+)(x)La3Zr2O12 with x = 0.19 crystallizes in the cubic space group Ia-3d, with a0 = 12.986(4) Å at room temperature. SEM and electron microprobe measurements were made to obtain compositional information and check for the presence of phases other than garnet. Inductively coupled plasma optical emission spectroscopy measurements were made to determine the Li content. (57)Fe Mössbauer spectra obtained at 295 and 80 K show that about 96% of the total iron occurs as Fe(3+) and 4% as Fe(2+). Roughly two-thirds of the Fe(3+) cations are assigned to the tetrahedral site (24d) and roughly one-quarter to a highly distorted site (possibly at 96h) in the garnet structure. Smaller amounts of Fe(3+) and Fe(2+), around 5% each, occur at other crystallographic sites. On the basis of published (27)Al MAS NMR results and analysis of the (57)Fe Mössbauer spectra, it appears that at low concentrations Al(3+) and Fe(3+) substitute in Li7La3Zr2O12 in a similar manner. The aliovalent substitution Al(3+)/Fe(3+) ↔ 3Li(+) in LLZO stabilizes the cubic phase and also probably promotes its high Li-ion conductivity.

8.
Phys Chem Chem Phys ; 14(44): 15520-4, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23072773

RESUMO

Relativistic effects in triphenylbismuth have been investigated using a combined experimental and theoretical approach. The influence of these effects on the molecular structure (determined by gas electron diffraction) has been evaluated by means of quantum chemical calculations which consider scalar-relativistic and relativistic effects causing electronic spin-orbit coupling. Besides the molecular structure, different types of spectroscopic techniques (IR, NMR, UV-vis) have been applied and their results have been set in contrast with the results derived from quantum chemical calculations.


Assuntos
Compostos Organometálicos/química , Compostos de Terfenil/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Teoria Quântica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
9.
Acta Crystallogr C Struct Chem ; 78(Pt 1): 1-6, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982043

RESUMO

Single crystals of an Li-stuffed, Al- and Ga-stabilized garnet-type solid-state electrolyte material, Li7La3Zr2O12 (LLZO), have been analysed using single-crystal X-ray diffraction to determine the pristine structural state immediately after synthesis via ceramic sintering techniques. Hydrothermal treatment at 150 °C for 28 d induces a phase transition in the Al-stabilized compound from the commonly observed cubic Ia-3d structure to the acentric I-43d subtype. LiI ions at the interstitial octahedrally (4 + 2-fold) coordinated 48e site are most easily extracted and AlIII ions order onto the tetrahedral 12a site. Deep hydration induces a distinct depletion of LiI at this site, while the second tetrahedral site, 12b, suffers only minor LiI loss. Charge balance is maintained by the incorporation of HI, which is bonded to an O atom. Hydration of Ga-stabilized LLZO induces similar effects, with complete depletion of LiI at the 48e site. The LiI/HI exchange not only leads to a distinct increase in the unit-cell size, but also alters some bonding topology, which is discussed here.


Assuntos
Lítio , Cristalografia por Raios X , Ligação de Hidrogênio , Íons , Transição de Fase
10.
Mater Adv ; 3(23): 8760-8770, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36544614

RESUMO

Li7La3Zr2O12 (LLZO) garnets are highly attractive to be used as solid electrolyte in solid-state Li batteries. However, LLZO suffers from chemical interaction with air and humidity, causing Li+/H+ exchange with detrimental implication on its performance, processing and scalability. To better understand the kinetics of the detrimental Li+/H+ exchange and its dependence on microstructural features, accelerated Li+/H+ exchange experiments were performed on single crystalline and polycrystalline LLZO, exposed for 80 minutes to 80 °C hot water. The resulting chemical changes were quantified by analytical methods, i.e. inductively coupled plasma optical emission spectroscopy (ICP-OES) and laser induced breakdown spectroscopy (LIBS). From the time dependence of the Li+ enrichment in the water, measured by ICP-OES, a bulk interdiffusion coefficient of Li+/H+ could be determined (7 × 10-17 m2 s-1 at 80 °C). Depth dependent concentrations were obtained from the LIBS data for both ions after establishing a calibration method enabling not only Li+ but also H+ quantification in the solid electrolyte. Short interdiffusion lengths in the 1 µm range are found for the single crystalline Ga:LLZO, in accordance with the measured bulk diffusion coefficient. In polycrystalline Ta:LLZO, however, very long diffusion tails in the 20 µm range and ion exchange fractions up to about 70% are observed. Those are attributed to fast ion interdiffusion along grain boundaries. The severe compositional changes also strongly affect the electrical properties measured by impedance spectroscopy. This study highlights that microstructural effects may be decisive for the Li+/H+ ion exchange kinetics of LLZO.

11.
Chem Sci ; 13(23): 6920-6928, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774179

RESUMO

Using water as a monomer in polymerization reactions presents a unique and exquisite strategy towards more sustainable chemistry. Herein, the feasibility thereof is demonstrated by the introduction of the oxa-Michael polyaddition of water and divinyl sulfone. Upon nucleophilic or base catalysis, the corresponding aliphatic polyethersulfone is obtained in an interfacial polymerization at room temperature in high yield (>97%) within an hour. The polyethersulfone is characterized by relatively high molar mass averages and a dispersity around 2.5. The polymer was tested as a solid polymer electrolyte with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the salt. Free-standing amorphous membranes were prepared by a melt process in a solvent-free manner. The polymer electrolyte containing 15 wt% LiTFSI featured an oxidative stability of up to 5.5 V vs. Li/Li+ at 45 °C and a conductivity of 1.45 × 10-8 S cm-1 at room temperature.

12.
Mater Horiz ; 9(6): 1717-1726, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451440

RESUMO

For millennia, ceramics have been densified via sintering in a furnace, a time-consuming and energy-intensive process. The need to minimize environmental impact calls for new physical concepts beyond large kilns relying on thermal radiation and insulation. Here, we realize ultrarapid heating with intense blue and UV-light. Thermal management is quantified in experiment and finite element modelling and features a balance between absorbed and radiated energy. With photon energy above the band gap to optimize absorption, bulk ceramics are sintered within seconds and with outstanding efficiency (≈2 kWh kg-1) independent of batch size. Sintering on-the-spot with blacklight as a versatile and widely applicable power source is demonstrated on ceramics needed for energy storage and conversion and in electronic and structural applications foreshadowing economic scalability.

13.
ACS Appl Mater Interfaces ; 13(1): 350-359, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372519

RESUMO

Li7La3Zr2O12 (LLZO) is one of the potential candidates for Li metal-based solid-state batteries owing to its high Li+ conductivity (≈10-3 S cm-1) at room temperature and large electrochemical stability window. However, LLZO undergoes protonation under the influence of moisture-forming Li2CO3 layers, thereby affecting its structural and transport properties. Therefore, a detailed understanding on the impact of the exchange of H+ on Li+ sites on structural alteration and kinetics under the influence of wet environments is of great importance. The present study focuses on the Li+/H+ exchange in single-crystal and polycrystal Li6La3ZrTaO12 (LLZTO) garnets prepared using the Czochralski method and solid-state reactions subjected to weathering in air, aqueous solutions at room temperature, and in aqueous solution at 363 K using X-ray diffraction (XRD) and neutron diffraction (ND) techniques. Based on 36 single-crystal diffraction and 88 powder diffraction measurements, we found that LLZTO crystallizes with space group (SG) Ia3̅d with Li located in 96h (Li(2)) and 24d (Li(1)) sites, whereas the latter one is displaced toward the general position 96h forming shorter Li(1)-Li(2) jump distances. The degradation in air, wet air, water, and acetic acid leads to a Li+/H+ exchange that preferably takes place at the 24d site, which is in contrast to previous reports. Higher Li+/H+ was observed for LLZTO aged in water at 363 K that reduced the symmetry to SG I4̅3d from SG Ia3̅d. This symmetry reduction was found to be related to the site occupation behavior of Li at the tetrahedral 12a site in SG I4̅3d. Moreover, Li+ is exchanged by H+ preferably at the 48e site (equivalent to 96h site). We also found that the equilibrium H+ concentrations in all media tested remains very similar, which is related to the H+ diffusion in the LLZTO-controlled exchange process. Only the increase in temperature led to a significant increase in the exchange capacity as well as in the Li+/H+ exchange rate. Overall, we found that the exchange rate, exchange capacity, site occupation behavior of Li+ and H+, as well as the structural stability of LLZTO, strongly depend on the composition. These findings suggest that measurements on a single LLZTO variant sample do not lead to a general conclusion for all garnets to guide the field toward better materials. In contrast, each composition has to be analyzed exclusively to understand the interplay of composition, structure, and exchange kinetic properties.

14.
J Mater Chem A Mater ; 9(27): 15226-15237, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34354833

RESUMO

Cubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1-4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.

15.
Front Chem ; 8: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158744

RESUMO

Currently, a variety of solid Li+ conductors are being discussed that could potentially serve as electrolytes in all-solid-state Li-ion batteries and batteries using metallic Li as the anode. Besides oxides, sulfides and thioposphates, and also halogenides, such as Li3YBr6, belong to the group of such promising materials. Here, we report on the mechanosynthesis of ternary, nanocrystalline (defect-rich) Li[In x Li y ]Br4, which crystallizes with a spinel structure. We took advantage of a soft mechanochemical synthesis route that overcomes the limitations of classical solid-state routes, which usually require high temperatures to prepare the product. X-ray powder diffraction, combined with Rietveld analysis, was used to collect initial information about the crystal structure; it turned out that the lithium indium bromide prepared adopts cubic symmetry ( Fd 3 ¯ m ). The overall and electronic conductivity were examined via broadband conductivity spectroscopy and electrical polarization measurements. While electric modulus spectroscopy yielded information on long-range ion transport, 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation measurements revealed rapid, localized ionic hopping processes in the ternary bromide. Finally, we studied the influence of thermal treatment on overall conductivity, as the indium bromide might find applications in cells that are operated at high temperatures (330 K and above).

16.
J Phys Chem C Nanomater Interfaces ; 124(31): 16796-16805, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32793327

RESUMO

Cubic Li7La3Zr2O12(LLZO), stabilized by supervalent cations, is one of the most promising oxide electrolyte to realize inherently safe all-solid-state batteries. It is of great interest to evaluate the strategy of supervalent stabilization in similar compounds and to describe its effect on ionic bulk conductivity σ'bulk. Here, we synthesized solid solutions of Li7-x La3M2-x Ta x O12 with M = Hf, Sn over the full compositional range (x = 0, 0.25...2). It turned out that Ta contents at x of 0.25 (M = Hf, LLHTO) and 0.5 (M = Sn, LLSTO) are necessary to yield phase pure cubic Li7-x La3M2-x Ta x O12. The maximum in total conductivity for LLHTO (2 × 10-4 S cm-1) is achieved for x = 1.0; the associated activation energy is 0.46 eV. At x = 0.5 and x = 1.0, we observe two conductivity anomalies that are qualitatively in agreement with the rule of Meyer and Neldel. For LLSTO, at x = 0.75 the conductivity σ'bulk turned out to be 7.94 × 10-5 S cm-1 (0.46 eV); the almost monotonic decrease of ion bulk conductivity from x = 0.75 to x = 2 in this series is in line with Meyer-Neldel's compensation behavior showing that a decrease in E a is accompanied by a decrease of the Arrhenius prefactor. Altogether, the system might serve as an attractive alternative to Al-stabilized (or Ga-stabilized) Li7La3Zr2O12 as LLHTO is also anticipated to be highly stable against Li metal.

17.
ACS Appl Mater Interfaces ; 12(43): 48580-48590, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33113638

RESUMO

Tantalum-doped garnet (Li6.5La3Zr1.5Ta0.5O12, LLZTO) is a promising candidate to act as a solid electrolyte in all-solid-state batteries owing to both its high Li+ conductivity and its relatively high robustness against the Li metal. Synthesizing LLZTO using conventional solid-state reaction (SSR) requires, however, high calcination temperature (>1000 °C) and long milling steps, thereby increasing the processing time. Here, we report on a facile synthesis route to prepare LLZTO using a molten salt method (MSS) at lower reaction temperatures and shorter durations (900 °C, 5 h). Additionally, a thorough analysis on the properties, i.e., morphology, phase purity, and particle size distribution of the LLZTO powders, is presented. LLZTO pellets, either prepared by the MSS or the SSR method, that were sintered in a Pt crucible showed Li+ ion conductivities of up to 0.6 and 0.5 mS cm-1, respectively. The corresponding activation energy values are 0.37 and 0.38 eV, respectively. The relative densities of the samples reached values of approximately 96%. For comparison, LLZTO pellets sintered in alumina crucibles or with γ-Al2O3 as sintering aid revealed lower ionic conductivities and relative densities with abnormal grain growth. We attribute these observations to the formation of Al-rich phases near the grain boundary regions and to a lower Li content in the final garnet phase. The MSS method seems to be a highly attractive and an alternative synthetic approach to SSR route for the preparation of highly conducting LLZTO-type ceramics.

18.
Rev Sci Instrum ; 90(2): 023910, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831734

RESUMO

Characterizing electrochemical energy conversion devices during operation is an important strategy for correlating device performance with the properties of cell materials under real operating conditions. While operando characterization has been used extensively for low temperature electrochemical cells, these techniques remain challenging for solid oxide electrochemical cells due to the high temperatures and reactive gas atmospheres these cells require. Operando X-ray diffraction measurements of solid oxide electrochemical cells could detect changes in the crystal structure of the cell materials, which can be useful for understanding degradation process that limit device lifetimes, but the experimental capability to perform operando X-ray diffraction on the fuel electrodes of these cells has not been demonstrated. Here we present the first experimental apparatus capable of performing X-ray diffraction measurements on the fuel electrodes of high temperature solid oxide electrochemical cells during operation under reducing gas atmospheres. We present data from an example experiment with a model solid oxide cell to demonstrate that this apparatus can collect X-ray diffraction patterns during electrochemical cell operation at high temperatures in humidified H2 gas. Measurements performed using this apparatus can reveal new insights about solid oxide fuel cell and solid oxide electrolyzer cell degradation mechanisms to enable the design of durable, high performance devices.

19.
Dalton Trans ; 48(25): 9376-9387, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31172156

RESUMO

High ionic conductivity, electrochemical stability and small interfacial resistances against Li metal anodes are the main requirements to be fulfilled in powerful, next-generation all-solid-state batteries. Understanding ion transport in materials with sufficiently high chemical and electrochemical stability, such as rhombohedral LiZr2(PO4)3, is important to further improve their properties with respect to translational Li ion dynamics. Here, we used broadband impedance spectroscopy to analyze the electrical responses of LiZr2(PO4)3 and Ca-stabilized Li1.4Ca0.2Zr1.8(PO4)3 that were prepared following a solid-state synthesis route. We investigated the influence of the starting materials, either ZrO2 and Zr(CH3COO)4, on the final properties of the products and studied Li ion dynamics in the crystalline grains and across grain boundary (g.b.) regions. The Ca2+ content has only little effect on bulk properties (4.2 × 10-5 S cm-1 at 298 K, 0.41 eV), but, fortunately, the g.b. resistance decreased by 2 orders of magnitude. Whereas, 7Li spin-alignment echo nuclear magnetic resonance (NMR) confirmed long-range ion transport as seen by conductivity spectroscopy, 7Li NMR spin-lattice relaxation revealed much smaller activation energies (0.18 eV) and points to rapid localized Li jump processes. The diffusion-induced rate peak, appearing at T = 282 K, shows Li+ exchange processes with rates of ca. 109 s-1 corresponding, formally, to ionic conductivities in the order of 10-3 S cm-1 to 10-2 S cm-1.

20.
Chem Mater ; 30(5): 1776-1781, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29606799

RESUMO

NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, ß, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the ß â†’ γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10-4 S cm-1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA