Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Sci ; 122(Pt 18): 3351-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19706676

RESUMO

Dimerization is recognized as a crucial step in the activation of many plasma membrane receptors. However, a growing number of receptors pre-exist as dimers in the absence of ligand, indicating that, although necessary, dimerization is not always sufficient for signaling. The p75 neurotrophin receptor (p75(NTR)) forms disulfide-linked dimers at the cell surface independently of ligand binding through Cys257 in its transmembrane domain. Here, we show that crosslinking of p75(NTR) dimers by cysteine-scanning mutagenesis results in constitutive, ligand-independent activity in several pathways that are normally engaged upon neurotrophin stimulation of native receptors. The activity profiles of different disulfide-crosslinked p75(NTR) mutants were similar but not identical, suggesting that different configurations of p75(NTR) dimers might be endowed with different functions. Interestingly, crosslinked p75(NTR) mutants did not mimic the effects of the myelin inhibitors Nogo or MAG, suggesting the existence of ligand-specific activation mechanisms. Together, these results support a conformational model of p75(NTR) activation by neurotrophins, and reveal a genetic approach to generate gain-of-function receptor variants with distinct functional profiles.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Dissulfetos/metabolismo , Multimerização Proteica , Receptor de Fator de Crescimento Neural/química , Receptor de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Células COS , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ligantes , Dados de Sequência Molecular , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Fatores de Crescimento Neural/farmacologia , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo
2.
J Neurochem ; 114(5): 1424-35, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20557424

RESUMO

Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Ocitocina/fisiologia , Animais , Linhagem Celular , Linhagem Celular Transformada , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/agonistas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Camundongos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/fisiologia , Ocitocina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/metabolismo
3.
Oncogene ; 22(38): 6054-60, 2003 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-12955084

RESUMO

We have recently shown that oxytocin inhibits cell proliferation when the vast majority of oxytocin receptors are excluded from caveolin-1-enriched microdomains, and that, on the contrary, it has a mitogenic effect when the receptors are targeted to these plasma membrane domains. In this study, we investigated whether the receptors located inside and outside caveolar microdomains initiate different signalling pathways and how this may lead to opposite effects on cell proliferation. Our data indicate that, depending on their localization, oxytocin receptors transactivate EGFR and activate ERK1/2 using different signalling intermediates. The final outcome is a different temporal pattern of EGFR and ERK1/2 phosphorylation, which is more persistent when the receptors are located outside caveolar microdomains and inhibit cell growth, and very transient when they are located in caveolar microdomains and stimulate cell growth. Finally, only the activation of receptors located outside caveolar microdomains correlates with the activation of the cell cycle inhibitor p21(WAF1/CIP1), thus suggesting that the antiproliferative OTR effects may, in this case, be achieved by a sustained activation of EGFR and MAPK leading to the induction of this cell cycle regulator.


Assuntos
Caveolinas/metabolismo , Receptores ErbB/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Ocitocina/metabolismo , Cavéolas/metabolismo , Caveolina 1 , Caveolina 2 , Caveolinas/genética , Divisão Celular/fisiologia , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Fosforilação , Receptores de Ocitocina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tirosina/metabolismo
4.
J Cell Biol ; 205(3): 395-408, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24798734

RESUMO

Remodeling of cell shape during morphogenesis is driven by the coordinated expansion and contraction of specific plasma membrane domains. Loss of this coordination results in abnormal cell shape and embryonic lethality. Here, we show that plasma membrane lipid composition plays a key role in coordinating plasma membrane contraction during expansion. We found that an increase in PI(4,5)P2 levels caused premature actomyosin contraction, resulting in the formation of shortened cells. Conversely, acute depletion of PI(4,5)P2 blocked plasma membrane expansion and led to premature actomyosin disassembly. PI(4,5)P2-mediated contractility is counteracted by PI(3,4,5)P3 and the zygotic gene bottleneck, which acts by limiting myosin recruitment during plasma membrane expansion. Collectively, these data support a model in which the ratio of PI(4,5)P2/PI(3,4,5)P3 coordinates actomyosin contractility and plasma membrane expansion during tissue morphogenesis, thus ensuring proper cell shape.


Assuntos
Membrana Celular/metabolismo , Forma Celular , Drosophila melanogaster/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Morfogênese , Miosina Tipo II/metabolismo , Fosfatidilinositóis/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Sistemas do Segundo Mensageiro , Transfecção
5.
Nat Commun ; 4: 2244, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23921440

RESUMO

During morphogenesis, remodelling of cell shape requires the expansion or contraction of plasma membrane domains. Here we identify a mechanism underlying the restructuring of the apical surface during epithelial morphogenesis in Drosophila. We show that the retraction of villous protrusions and subsequent apical plasma membrane flattening is an endocytosis-driven morphogenetic process. Quantitation of endogenously tagged GFP::Rab5 dynamics reveals a massive increase in apical endocytosis that correlates with changes in apical morphology. This increase is accompanied by the formation of tubular plasma membrane invaginations that serve as platforms for the de novo generation of Rab5-positive endosomes. We identify the Rab5-effector Rabankyrin-5 as a regulator of this pathway and demonstrate that blocking dynamin activity results in the complete inhibition of tubular endocytosis, in the disappearance of Rab5 endosomes, and in the inhibition of surface flattening. These data collectively demonstrate a requirement for endocytosis in morphogenetic remodelling during epithelial development.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Drosophila melanogaster/crescimento & desenvolvimento , Endocitose , Células Epiteliais/citologia , Epitélio/crescimento & desenvolvimento , Morfogênese , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/ultraestrutura , Dinaminas/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Endossomos/metabolismo , Células Epiteliais/metabolismo , Membranas Intracelulares/metabolismo , Microscopia de Fluorescência , Frações Subcelulares/metabolismo , Regulação para Cima , Proteínas rab5 de Ligação ao GTP/metabolismo
6.
Am J Physiol Endocrinol Metab ; 296(3): E532-42, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19126785

RESUMO

As in the case of most G protein-coupled receptors, agonist stimulation of human oxytocin receptors (OTRs) leads to desensitization and internalization; however, little is known about the subsequent intracellular OTR trafficking, which is crucial for reestablishing agonist responsiveness. We examined receptor resensitization by first using HEK293T cells stably expressing human OTRs. Upon agonist activation, the receptors were almost completely sequestered inside intracellular compartments that were not labeled by lysosomal markers, thus indicating that the internalized receptors were not sorted to these degrading organelles. Binding and fluorescence assays showed that almost 85% of the receptors had returned to the cell surface after 4 h, by which time cell responsiveness to the agonist was also completely restored, as shown by measuring phospholipase C activation. Similar results were also obtained in the presence of cycloheximide, thus indicating that receptor recycling and not de novo receptor synthesis was responsible for the resensitization. Notably, very similar internalization and recycling kinetics were observed in endogenous OTRs expressed on myometrial cells. We also investigated the role of beta-arrestin2 in OTR recycling as these receptors have been previously classified as slowly or nonrecycling receptors on the basis of their stable association with this interacting protein. Our data suggest that the stable OTR/beta-arrestin2 interaction plays an important role in determining the rate of recycling of human OTRs, but does not determine the fate of endocytosed receptors. Subsequent investigations of receptor recycling pathways showed that OTRs localize in vesicles containing the Rab5 and Rab4 small GTPases (markers of the "short cycle"), whereas there was no colocalization with Rab11 (a marker of the "long cycle") or Rab7 (a marker of vesicles directed to endosomal/lysosomal compartments). Taken together, these data indicate that OTRs are capable of very efficient and complete resensitization due to receptor recycling via the short cycle.


Assuntos
Transporte Proteico/fisiologia , Receptores de Ocitocina/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Arrestinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Endocitose/fisiologia , Feminino , Humanos , Rim/citologia , Lisossomos/metabolismo , Miométrio/citologia , Miométrio/metabolismo , Ocitocina/farmacologia , Receptores de Superfície Celular/metabolismo , Receptores de Ocitocina/agonistas , Trítio , beta-Arrestinas , Proteínas rab de Ligação ao GTP/metabolismo
7.
Neuron ; 62(1): 72-83, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19376068

RESUMO

Ligand-mediated dimerization has emerged as a universal mechanism of growth factor receptor activation. Neurotrophins interact with dimers of the p75 neurotrophin receptor (p75(NTR)), but the mechanism of receptor activation has remained elusive. Here, we show that p75(NTR) forms disulphide-linked dimers independently of neurotrophin binding through the highly conserved Cys(257) in its transmembrane domain. Mutation of Cys(257) abolished neurotrophin-dependent receptor activity but did not affect downstream signaling by the p75(NTR)/NgR/Lingo-1 complex in response to MAG, indicating the existence of distinct, ligand-specific activation mechanisms for p75(NTR). FRET experiments revealed a close association of p75(NTR) intracellular domains that was transiently disrupted by conformational changes induced upon NGF binding. Although mutation of Cys(257) did not alter the oligomeric state of p75(NTR), the mutant receptor was no longer able to propagate conformational changes to the cytoplasmic domain upon ligand binding. We propose that neurotrophins activate p75(NTR) by a mechanism involving rearrangement of disulphide-linked receptor subunits.


Assuntos
Multimerização Proteica/fisiologia , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Chlorocebus aethiops , Cisteína/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Mutação/genética , NF-kappa B/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligopeptídeos/genética , Ligação Proteica/genética , Conformação Proteica , Multimerização Proteica/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptor de Fator de Crescimento Neural/genética , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/fisiologia , Gânglio Cervical Superior/citologia , Transfecção/métodos , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Traffic ; 8(12): 1736-1749, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17897318

RESUMO

The p75 neurotrophin receptor (p75(NTR)) plays multiple roles in neuronal physiology through interactions with many ligands and coreceptors. However, its intracellular neuronal trafficking prior to and after neurotrophin activation is still poorly characterized. We have previously shown that in response to nerve growth factor (NGF), p75(NTR) is retrogradely transported along the axons of motor neurons (MNs) in carriers shared with NGF, brain-derived neurotrophic factor and the tyrosine kinase receptor TrkB. Here, we report that NGF does not enhance the internalization or degradation of p75(NTR), which undergoes a rapid dynamin-dependent and clathrin-independent recycling process in MNs. Instead, incubation of cells with NGF leads to the redirection of a pool of plasma membrane p75(NTR) into clathrin-coated pits. The subsequent internalization of p75(NTR) via clathrin-mediated endocytosis, as well as the activity of Rab5, are essential for the sorting of the p75(NTR)-containing endosomes to the axonal retrograde transport pathway and for the delivery of p75(NTR) to the soma. Our findings suggest that the spatial regulation of p75(NTR) signalling is controlled by these ligand-driven routes of endocytosis.


Assuntos
Axônios/metabolismo , Clatrina/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/química , Animais , Transporte Biológico , Membrana Celular/metabolismo , Clatrina/química , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitose , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso , Ratos , Receptores de Fatores de Crescimento , Medula Espinal/metabolismo , Temperatura , Fator de Transcrição AP-2/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 291(4): R861-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16966388

RESUMO

We have recently shown that oxytocin inhibits cell growth when the vast majority of oxytocin receptors (OTRs) are excluded from detergent-resistant membranes (DRMs; the biochemical counterpart of lipid rafts), but has a strong mitogenic effect when the receptors are targeted to these plasma membrane domains upon fusion with caveolin-2, a resident raft protein. The aim of this study was to investigate whether the manipulation of total cell cholesterol can influence OTR localization and signaling. Our data indicate that cholesterol depletion in HEK-293 cells does not affect the signaling events mediated by the OTRs located outside DRMs. When treated with 2 mM methyl-beta-cyclodextrin (MbetaCD), the receptors remained outside and continued to inhibit cell growth. On the contrary, the MbetaCD treatment of cells expressing receptors fused to caveolin-2 led to their redistribution outside DRMs, and converted the receptor-mediated proliferative effect into cell growth inhibition. These data indicate that 1) once released from DRMs, the receptors fused to caveolin-2 signal exactly as wild-type OTRs and 2) their DRM location is responsible for the specific OTR signaling leading to cell proliferation. Finally, we evaluated whether cholesterol loading could force the OTRs into lipid rafts and change their signaling, but, after cell treatment with an MbetaCD/cholesterol complex, receptor stimulation continued to lead to cell growth inhibition, thus indicating that increasing cell cholesterol levels is not sufficient per se to affect OTR signaling.


Assuntos
Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de Ocitocina/metabolismo , Transdução de Sinais/fisiologia , Caveolina 2/metabolismo , Divisão Celular/fisiologia , Linhagem Celular , Colesterol/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Receptores de Ocitocina/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , beta-Ciclodextrinas/farmacologia
10.
J Mammary Gland Biol Neoplasia ; 10(3): 221-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16807802

RESUMO

Oxytocin (OT) plays a crucial role as a mediator of breast myoepithelial cell contraction, the process responsible for the ejection of milk during lactation, and is also involved in myoepithelial cell proliferation and postpartum mammary gland proliferation. Furthermore, although a number of breast cancer cells have oxytocin receptors (OTRs), it has been reported that OT stimulates, inhibits, or has no effect on cell proliferation. As these different effects seem to be mediated by different signaling pathways elicited by OTR stimulation, we here review the regulation of OTR signaling in different cell systems and discuss how understanding the molecular basis of receptor coupling specificity has become extremely important for understanding the role played by OTRs in regulating cell growth.


Assuntos
Neoplasias da Mama/metabolismo , Epitélio/metabolismo , Neoplasias Mamárias Animais/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Transdução de Sinais/fisiologia , Animais , Mama/patologia , Mama/fisiologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Lactação/fisiologia , Glândulas Mamárias Animais/patologia , Microdomínios da Membrana/metabolismo , Células Musculares/metabolismo , Receptores de Ocitocina/genética , Células Tumorais Cultivadas/efeitos dos fármacos , Vasotocina/metabolismo
11.
J Biol Chem ; 280(16): 16311-8, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15705593

RESUMO

In human myometrial cells, the promiscuous coupling of the oxytocin receptors (OTRs) to G(q) and G(i) leads to contraction. However, the activation of OTRs coupled to different G protein pathways can also trigger opposite cellular responses, e.g. OTR coupling to G(i) inhibits, whereas its coupling to G(q) stimulates, cell proliferation. Drug analogues capable of promoting a selective receptor-G protein coupling may be of great pharmacological and clinical importance because they may target only one specific signal transduction pathway. Here, we report that atosiban, an oxytocin derivative that acts as a competitive antagonist on OTR/G(q) coupling, displays agonistic properties on OTR/G(i) coupling, as shown by specific (35)S-labeled guanosine 5'-3-O-(thio) trisphosphate ([(35)S]GTPgammaS) binding. Moreover, atosiban, by acting on a G(i)-mediated pathway(,) inhibits cell growth of HEK293 and Madin-Darby canine kidney cells stably transfected with OTRs and of DU145 prostate cancer cells expressing endogenous OTRs. Notably, atosiban leads to persistent ERK1/2 activation and p21(WAF1/CIP1) induction, the same signaling events leading to oxytocin-mediated cell growth inhibition via a G(i) pathway. Finally, atosiban exposure did not cause OTR internalization and led to only a modest decrease (20%) in the number of high affinity cell membrane OTRs, two observations consistent with the finding that atosiban did not lead to any desensitization of the oxytocin-induced activation of the G(q)-phospholipase C pathway. Taken together, these observations indicate that atosiban acts as a "biased agonist" of the human OTRs and thus belongs to the class of compounds capable of selectively discriminating only one among the multiple possible active conformations of a single G protein-coupled receptor, thereby leading to the selective activation of a unique intracellular signal cascade.


Assuntos
Proliferação de Células/efeitos dos fármacos , Receptores de Ocitocina/antagonistas & inibidores , Vasotocina/análogos & derivados , Vasotocina/farmacologia , Técnicas de Transferência de Genes , Humanos , Receptores de Ocitocina/genética , Fatores de Tempo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA