Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(18): 10845-10851, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908516

RESUMO

The on-surface synthesis of non-planar nanographenes is a challenging task. Herein, with the aid of bond-resolving scanning tunneling microscopy (BRSTM) and density functional theory (DFT) calculations, we present a systematic study aiming at the fabrication of corannulene-based nanographenes via intramolecular cyclodehydrogenation on a Au(111) surface. The formation of non-planar targeted products is confirmed to be energetically unfavorable compared to the formation of planar/quasi-planar undesired competing monomer products. In addition, the activation of intermolecular coupling further inhibits the formation of the final targeted product. Although it was not possible to access the corannulene moiety by means of on-surface synthesis, partial cyclodehydrogenation of the molecular precursors was demonstrated.

2.
Angew Chem Int Ed Engl ; 60(48): 25224-25229, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34647398

RESUMO

Triangulene nanographenes are open-shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long-sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl-anthracene cyclic hexamer and the on-surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired π-electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S=1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of an S=1 spin ring, representing a unique system to test collective spin modes in cyclic systems.

3.
Angew Chem Int Ed Engl ; 59(51): 22989-22993, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845044

RESUMO

Glaser-like coupling of terminal alkynes by thermal activation is extensively used in on-surface chemistry. Here we demonstrate an intramolecular version of this reaction performed by atom manipulation. We used voltage pulses from the tip to trigger a Glaser-like coupling between terminal alkyne carbons within a custom-synthesized precursor molecule adsorbed on bilayer NaCl on Cu(111). Different conformations of the precursor molecule and the product were characterized by molecular structure elucidation with atomic force microscopy and orbital density mapping with scanning tunneling microscopy, accompanied by density functional theory calculations. We revealed partially dehydrogenated intermediates, providing insight into the reaction pathway.

4.
ACS Nano ; 15(3): 4937-4946, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33630588

RESUMO

The combination of alkyne and halogen functional groups in the same molecule allows for the possibility of many different reactions when utilized in on-surface synthesis. Here, we use a pyrene-based precursor with both functionalities to examine the preferential reaction pathway when it is heated on an Au(111) surface. Using high-resolution bond-resolving scanning tunneling microscopy, we identify multiple stable intermediates along the prevailing reaction pathway that initiate with a clearly dominant Glaser coupling, together with a multitude of other side products. Importantly, control experiments with reactants lacking the halogen functionalization reveal the Glaser coupling to be absent and instead show the prevalence of non-dehydrogenative head-to-head alkyne coupling. We perform scanning tunneling spectroscopy on a rich variety of the product structures obtained in these experiments, providing key insights into the strong dependence of their HOMO-LUMO gaps on the nature of the intramolecular coupling. A clear trend is found of a decreasing gap that is correlated with the conversion of triple bonds to double bonds via hydrogenation and to higher levels of cyclization, particularly with nonbenzenoid product structures. We rationalize each of the studied cases.

5.
ACS Nano ; 14(9): 11120-11129, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32804481

RESUMO

The on-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) is challenged by the stability of the functional groups throughout the thermal reaction steps of the synthetic pathway. Edge fluorination is a particularly critical case in which the interaction with the catalytic substrate and intermediate products can induce the complete cleavage of the otherwise strong C-F bonds before the formation of the GNR. Here, we demonstrate how a rational design of the precursor can stabilize the functional group, enabling the synthesis of edge-fluorinated GNRs. The survival of the functionalization is demonstrated by tracking the structural and chemical transformations occurring at each reaction step with complementary X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements. In contrast to previous attempts, we find that the C-F bond survives the cyclodehydrogenation of the intermediate polymers, leaving a thermal window where GNRs withhold more than 80% of the fluorine atoms. We attribute this enhanced stability of the C-F bond to the particular structure of our precursor, which prevents the cleavage of the C-F bond by avoiding interaction with the residual hydrogen originated in the cyclodehydrogenation. This structural protection of the linking bond could be implemented in the synthesis of other sp2-functionalized GNRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA