Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Magn Reson Med ; 91(3): 1179-1189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867467

RESUMO

PURPOSE: To propose an efficient bi-component MR fingerprinting (MRF) fitting method using a Variable Projection (VARPRO) strategy, applied to the quantification of fat fraction (FF) and water T1 ( T 1 H 2 0 $$ \mathrm{T}{1}_{{\mathrm{H}}_20} $$ ) in skeletal muscle tissues. METHODS: The MRF signals were analyzed in a two-step process by comparing them to the elements of separate water and fat dictionaries (bi-component dictionary matching). First, each pair of water and fat dictionary elements was fitted to the acquired signal to determine an optimal FF that was used to merge the fingerprints in a combined water/fat dictionary. Second, standard dictionary matching was applied to the combined dictionary for determining the remaining parameters. A clustering method was implemented to further accelerate the fitting. Accuracy, precision, and matching time of this approach were evaluated on both numerical and in vivo datasets, and compared to the reference dictionary-matching approach that includes FF as a dictionary parameter. RESULTS: In numerical phantoms, all MRF parameters showed high correlation with ground truth for the reference and the bi-component method (R2 > 0.98). In vivo, the estimated parameters from the proposed method were highly correlated with those from the reference approach (R2 > 0.997). The bi-component method achieved an acceleration factor of up to 360 compared to the reference dictionary matching. CONCLUSION: The proposed bi-component fitting approach enables a significant acceleration of the reconstruction of MRF parameter maps for fat-water imaging, while maintaining comparable precision and accuracy to the reference on FF and T 1 H 2 0 $$ \mathrm{T}{1}_{{\mathrm{H}}_20} $$ estimation.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Água , Algoritmos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Músculo Esquelético/diagnóstico por imagem
2.
NMR Biomed ; : e5278, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39434514

RESUMO

Quantitative MRI and MRS have become important tools for the assessment and management of patients with neuromuscular disorders (NMDs). Despite significant progress, there is a need for new objective measures with improved specificity to the underlying pathophysiological alteration. This would enhance our ability to characterize disease evolution and improve therapeutic development. In this study, qMRI methods that are commonly used in clinical studies involving NMDs, like water T2 (T2H2O) and T1 and fat-fraction (FF) mapping, were employed to evaluate disease activity and progression in the skeletal muscle of golden retriever muscular dystrophy (GRMD) dogs. Additionally, extracellular volume (ECV) fraction and single-voxel bicomponent water T2 relaxometry were included as potential markers of specific histopathological changes within the tissue. Apart from FF, which was not significantly different between GRMD and control dogs and showed no trend with age, T2H2O, T1, ECV, and the relative fraction of the long-T2 component, A2, were significantly elevated in GRMD dogs across all age ranges. Moreover, longitudinal assessment starting at 2 months of age revealed significant decreases in T2H2O, T1, ECV, A2, and the T2 of the shorter-T2 component, T21, in both control and GRMD dogs during their first year of life. Notably, insights from ECV and bicomponent water T2 indicate that (I) the elevated T2H2O and T1 values observed in dystrophic muscle are primarily driven by an expansion of the extracellular space, likely driven by the edematous component of inflammatory responses to tissue injury and (II) the significant decrease of T2H2O and T1 with age in control and GRMD dogs reflects primarily the progressive increase in fiber diameter and protein content during tissue development. Our study underscores the potential of multicomponent water T2 relaxometry and ECV to provide valuable insights into muscle pathology in NMDs.

3.
J Magn Reson Imaging ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593265

RESUMO

BACKGROUND: Improved characterization of healthy muscle aging is needed to establish early biomarkers in age-related diseases. PURPOSE: To quantify age-related changes on multiple MRI and clinical variables evaluated in the same cohort and identify correlations among them. STUDY TYPE: Prospective. POPULATION: 70 healthy subjects (30 men) from 20 to 81 years old. FIELD STRENGTH/SEQUENCE: 3T/water T2 (multiecho SE, multi-TE STEAM), water T1 (GRE MR Fingerprinting), fat-fraction (multiecho GRE, multi-TE STEAM), carnosine (PRESS), multicomponent water T2 (ISIS-CPMG SE train), and 31P pulse-acquire spectroscopy. ASSESSMENT: Age- and sex-related changes on: Imaging: fat-fraction (FFMRI), water T1 (T1-H2O), and T2 (T2-H2O-MRI) and their heterogeneities ΔT1-H2O and ΔT2-H2O-MRI in the posterior compartment (PC) and anterior compartment (AC) of the leg. 1H spectroscopy: Carnosine concentration, pH, water T2 components (T2-H2O-CPMG), fat-fraction (FFMRS), and water T2 (T2-H2O-MRS) in the gastrocnemius medialis. 31P spectroscopy: Phosphodiesters (PDE), phosphomonoesters, inorganic phosphates (Pi), and phosphocreatine (PCr) normalized to adenosine triphosphate (ATP) and pH in the calf. Clinical evaluation: Body-mass index (BMI), gait speed (GS), plantar flexion strength, handgrip strength (HS), HS normalized to wrist circumference (HSnorm), physical activity assessment. STATISTICAL TESTS: Multilinear regressions with sex and age as fixed factors. Spearman correlations calculated between variables. Benjamini-Hochberg procedure for false positives reduction (5% rate). A P < 0.05 significance level was used. RESULTS: Significant age-related increases were found for BMI (ρAge = 0.04), HSnorm (ρAge = -0.01), PDE/ATP (ρAge = 2.8 × 10-3), Pi/ATP (ρAge = 2.0 × 10-3), Pi/PCr (ρAge = 0.3 × 10-3), T2-H2O-MRS (ρAge = 0.051 msec), FFMRS (ρAge = 0.036) the intermediate T2-H2O-CPMG component time (ρAge = 0.112 msec), and fraction (ρAge = -0.3 × 10-3); and in both compartments for FFMRI (ρAge = 0.06, PC; ρAge = 0.06, AC), T2-H2O-MRI (ρAge = 0.05, PC; ρAge = 0.05, AC; msec), ΔT2-H2O-MRI (ρAge = 0.02, PC; ρAge = 0.02, AC; msec), T1-H2O (ρAge = 1.08, PC; ρAge = 1.06, AC; msec), and ΔT1-H2O (ρAge = 0.22, PC; ρAge = 0.37, AC; msec). The best age predictors, accounting for sex-related differences, were HSnorm (R2 = 0.52) and PDE/ATP (R2 = 0.44). In both leg compartments, the imaging measures and HSnorm were intercorrelated. In PC, T2-H2O-MRS and FFMRS also showed numerous correlations to the imaging measures. PDE/ATP correlated to T1-H2O, T2-H2O-MRI, ΔT2-H2O-MRI, FFMRI, FFMRS, the intermediate T2-H2O-CPMG, BMI, Pi/PCr, and HSnorm. DATA CONCLUSION: Our multiparametric MRI approach provided an integrative view of age-related changes in the leg and revealed multiple correlations between these parameters and the normalized HS. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.

4.
Radiology ; 307(3): e221115, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880945

RESUMO

Background Quantitative MRI is increasingly proposed in clinical trials related to dystrophinopathies, including Becker muscular dystrophy (BMD). Purpose To establish the sensitivity of extracellular volume fraction (ECV) quantification using an MR fingerprinting sequence with water and fat separation as a quantitative imaging biomarker of skeletal muscle tissue alterations in BMD compared with fat fraction (FF) and water relaxation time quantification. Materials and Methods In this prospective study, study participants with BMD and healthy volunteers were included from April 2018 until October 2022 (ClinicalTrials.gov identifier NCT02020954). The MRI examination comprised FF mapping with the three-point Dixon method, water T2 mapping, and water T1 mapping before and after an intravenous injection of a gadolinium-based contrast agent by using MR fingerprinting, from which ECV was calculated. Functional status was measured with use of the Walton and Gardner-Medwin scale. This clinical evaluation tool stratifies disease severity from grade 0 (preclinical; elevated creatine phosphokinase; all activities normal) to grade 9 (unable to eat, drink, or sit without assistance). Mann-Whitney U tests, Kruskal-Wallis tests, and Spearman rank correlation tests were performed. Results Twenty-eight participants with BMD (median age, 42 years [IQR, 34-52 years]; 28 male) and 19 healthy volunteers (median age, 39 years [IQR, 33-55 years]; 19 male) were evaluated. ECV was higher in participants with dystrophy than in controls (median, 0.21 [IQR, 0.16-0.28] vs 0.07 [IQR, 0.07-0.08]; P < .001). In muscles of participants with BMD with normal FF, ECV was also higher than in muscles of healthy controls (median, 0.11 [IQR, 0.10-0.15] vs 0.07 [IQR, 0.07-0.08]; P = .02). ECV was correlated with FF (ρ = 0.56, P = .003), Walton and Gardner-Medwin scale score (ρ = 0.52, P = .006), and serum cardiac troponin T level (ρ = 0.60, P < .001). Conclusion Quantitative MR relaxometry with water and fat separation indicates a significant increase of skeletal muscle extracellular volume fraction in study participants with Becker muscular dystrophy. Clinical trial registration no. NCT02020954 Published under a CC BY 4.0 license. Supplemental material is available for this article.


Assuntos
Distrofia Muscular de Duchenne , Adulto , Humanos , Masculino , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético , Estudos Prospectivos
5.
J Magn Reson Imaging ; 58(5): 1557-1568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36877200

RESUMO

BACKGROUND: The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE: To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE: Retrospective case-control study. POPULATION: A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE: A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI and R 2 * mapping). ASSESSMENT: Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), and R 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS: Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS: Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly different R 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION: The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Assuntos
Doenças Neuromusculares , Água , Humanos , Masculino , Feminino , Estudos Retrospectivos , Estudos de Casos e Controles , Músculo Esquelético/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
6.
Skeletal Radiol ; 52(2): 157-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35978163

RESUMO

OBJECTIVE: To standardize a method for 1H MRS intramuscular absolute quantification of carnosine in the thigh, using a surface coil and water as internal reference. MATERIALS AND METHODS: Carnosine spectra were acquired in phantoms (5, 10, and 15 mM) as well as in the right gastrocnemius medialis (GM) and right vastus lateralis (VLM) muscles of young team sports athletes, using volume (VC) and surface (SC) coils on a 3 T scanner, with the same receiver gain. Water spectra were used as internal reference for the absolute quantification of carnosine. RESULTS: Phantom's experiments showed a maximum error of 7%, highlighting the validity of the measurements in the study setup. The carnosine concentrations (mmol/kg ww, mean ± SD) measured in the GM were 6.8 ± 2.2 with the VC (CcarVC) and 10.2 ± 3.0 with the SC (CcarSC) (P = 0.013; n = 9). Therefore, a correction was applied to these measurements (CcarVC = 0.6582*CcarSC), to make coils performance comparable (6.8 ± 2.2 for VC and 6.7 ± 2.0 for SC, P = 0.97). After that, only the SC was used to quantify carnosine in the VLM, where a concentration of 5.4 ± 1.5 (n = 30) was found, with significant differences between men (6.2 ± 1.3; n = 15) and women (4.6 ± 1.2; n = 15). The error in quantitation was 5.3-5.5% with both coils. CONCLUSION: The method using the SC and water as internal reference can be used to quantify carnosine in voluminous muscles and regions of the body in humans, where the VC is not suitable, such as the VLM.


Assuntos
Carnosina , Masculino , Humanos , Feminino , Músculo Quadríceps/diagnóstico por imagem , Água , Músculo Esquelético/diagnóstico por imagem , Coxa da Perna
7.
Radiology ; 300(3): 652-660, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254855

RESUMO

Background Quantitative MRI is increasingly proposed in clinical trials related to neuromuscular disorders (NMDs). Purpose To investigate the potential of an MR fingerprinting sequence for water and fat fraction (FF) quantification (MRF T1-FF) for providing markers of fatty replacement and disease activity in patients with NMDs and to establish the sensitivity of water T1 as a marker of disease activity compared with water T2 mapping. Materials and Methods Data acquired between March 2018 and March 2020 from the legs of patients with NMDs were retrospectively analyzed. The MRI examination comprised fat-suppressed T2-weighted imaging, mapping of the FF measured with the three-point Dixon technique (FFDixon), water T2 mapping, and MRF T1-FF, from which the FF measured with MRF T1-FF (FFMRF) and water T1 were derived. Data from the legs of healthy volunteers were prospectively acquired between January and July 2020 to derive abnormality thresholds for FF, water T2, and water T1 values. Kruskal-Wallis tests and receiver operating characteristic curve analysis were performed, and linear models were used. Results A total of 73 patients (mean age ± standard deviation, 47 years ± 12; 45 women) and 15 healthy volunteers (mean age, 33 years ± 8; three women) were evaluated. A linear correlation was observed between FFMRF and FFDixon (R2 = 0.97, P < .001). Water T1 values were higher in muscles with high signal intensity at fat-suppressed T2-weighted imaging than in muscles with low signal intensity (mean value, 1281 msec [95% CI: 1165, 1604] vs 1198 msec [95% CI: 1099, 1312], respectively; P < .001), and a correlation was found between water T1 and water T2 distribution metrics (R2 = 0.66 and 0.79 for the median and 90th percentile values, respectively; P < .001). Water T1 classified the patients' muscles as abnormal based on quantitative water T2, with high sensitivity (93%; 68 of 73 patients) and specificity (80%; 53 of 73 patients) (area under the receiver operating characteristic curve, 0.92 [95% CI: 0.83, 0.97]; P < .001). Conclusion Water-fat separation in MR fingerprinting is robust for deriving quantitative imaging markers of intramuscular fatty replacement and disease activity in patients with neuromuscular disorders. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Doenças Neuromusculares/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Neuromusculares/patologia , Estudos Retrospectivos , Água
8.
J Magn Reson Imaging ; 53(5): 1529-1538, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32996670

RESUMO

BACKGROUND: Quantitative muscle MRI is a robust tool to monitor intramuscular fatty replacement and disease activity in patients with neuromuscular disorders (NMDs). PURPOSE: To implement a 3D sequence for quantifying simultaneously fat fraction (FF) and water T1 (T1,H2O ) in the skeletal muscle, evaluate regular undersampling in the partition-encoding direction, and compare it to a recently proposed 2D MR fingerprinting sequence with water and fat separation (MRF T1 -FF). STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Seventeen-vial phantom at different FF and T1,H2O , 11 healthy volunteers, and 6 subjects with different NMDs. FIELD STRENGTH/SEQUENCE: 3T/3D MRF T1 -FF, 2D MRF T1 -FF, STEAM MRS ASSESSMENT: FF and T1,H2O measured with the 2D and 3D sequences were compared in the phantom and in vivo at different undersampling factors (US). Data were acquired in healthy subjects before and after plantar dorsiflexions and at rest in patients. STATISTICAL TESTS: Linear correlations, Bland-Altman analysis, two-way repeated measures analysis of variance (ANOVA), Student's t-test. RESULTS: Up to a US factor of 3, the undersampled acquisitions were in good agreement with the fully sampled sequence (R2 ≥ 0.98, T1,H2O bias ≤10 msec, FF bias ≤4 × 10-4 ) both in phantom and in vivo. The 2D and 3D MRF T1 -FF sequences provided comparable T1,H2O and FF values (R2 ≥ 0.95, absolute T1,H2O bias ≤35 msec, and absolute FF bias ≤0.003). The plantar dorsiflexion induced a significant increase of T1,H2O in the tibialis anterior and extensor digitorum (relative increase of +10.8 ± 1.7% and + 7.7 ± 1.4%, respectively, P < 0.05), that was accompanied by a significant reduction of FF in the tibialis anterior (relative decrease of -16.3 ± 4.0%, P < 0.05). Some subjects with NMDs presented increased and heterogeneous T1,H2O and FF values throughout the leg. DATA CONCLUSION: Quantitative 3D T1,H2O and FF maps covering the entire leg were obtained within acquisition times compatible with clinical research (4 minutes 20 seconds) and a 1 × 1 × 5 mm3 spatial resolution. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Processamento de Imagem Assistida por Computador , Água , Humanos , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
9.
J Magn Reson Imaging ; 53(1): 181-189, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761705

RESUMO

BACKGROUND: The monoexponential water T2 (T2-mono ) is a proven biomarker of disease activity in neuromuscular disorders (NMDs). However, it lacks specificity, being elevated in the presence of several pathological processes and pathomorphological alterations in the muscle tissue. PURPOSE: To investigate the multiexponential behavior of the water T2 -relaxation in the skeletal muscle of NMD patients, aiming to identify more sensitive and specific biomarkers of disease activity. STUDY TYPE: Retrospective case-control. POPULATION: Thirty Duchenne muscular dystrophy and 114 inclusion body myositis patients and 55 control subjects. FIELD STRENGTH/SEQUENCE: 3T/Single-voxel proton spectroscopy (1 H-MRS) and multispin-echo (MSE) imaging. ASSESSMENT: Water T2 -decay curves generated from 1 H-MRS data acquired at 14 echo-times were fitted to mono- and biexponential models and the adjusted R2 of each fit was computed. Additionally, T2 spectra were generated from a regularized inverse Laplace transform. For comparison, water T2 maps were generated from the MSE data. The performances of the different variables at identifying patients were assessed via receiver operating characteristic (ROC)-curve analysis. STATISTICAL TESTS: Chi-square, Kruskal-Wallis, and Mann-Whitney with Bonferroni correction for multiple comparisons. RESULTS: T2-mono was elevated in patients (P<0.05), but could not distinguish inclusion body myositis (IBM) from Duchenne muscular dystrophy (DMD). While 79% of IBM data presented a biexponential behavior, this was only 16% and 10% for DMD and control data, respectively (P<0.05). All T2 spectra presented an intermediate-T2 peak characterized by an elevated T2 in patients (P<0.05) and by a relative fraction that was abnormally smaller in IBM patients (P<0.05). Also, a long-T2 peak was exclusively observed in IBM patients. A combination of T2 -spectrum variables performed best at identifying patients. DATA CONCLUSION: T2 spectra not only provided more sensitive and specific markers of disease presence than the T2-mono , but also allowed distinguishing IBM from DMD patients. This must reflect distinct predominant pathological alterations between these diseases, suggesting that these markers provide additional pathophysiological/histopathological information that are missing from T2-mono . LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Imageamento por Ressonância Magnética , Distrofia Muscular de Duchenne , Biomarcadores , Humanos , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Estudos Retrospectivos , Água
10.
Eur Radiol ; 31(6): 4264-4276, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33219846

RESUMO

OBJECTIVES: Magnetic resonance imaging (MRI) constitutes a powerful outcome measure in neuromuscular disorders, yet there is a broad diversity of approaches in data acquisition and analysis. Since each neuromuscular disease presents a specific pattern of muscle involvement, the recommended analysis is assumed to be the muscle-by-muscle approach. We, therefore, performed a comparative analysis of different segmentation approaches, including global muscle segmentation, to determine the best strategy for evaluating disease progression. METHODS: In 102 patients (21 immune-mediated necrotizing myopathy/IMNM, 21 inclusion body myositis/IBM, 10 GNE myopathy/GNEM, 19 Duchenne muscular dystrophy/DMD, 12 dysferlinopathy/DYSF, 7 limb-girdle muscular dystrophy/LGMD2I, 7 Pompe disease, 5 spinal muscular atrophy/SMA), two MRI scans were obtained at a 1-year interval in thighs and lower legs. Regions of interest (ROIs) were drawn in individual muscles, muscle groups, and the global muscle segment. Standardized response means (SRMs) were determined to assess sensitivity to change in fat fraction (ΔFat%) in individual muscles, muscle groups, weighted combinations of muscles and muscle groups, and in the global muscle segment. RESULTS: Global muscle segmentation gave high SRMs for ΔFat% in thigh and lower leg for IMNM, DYSF, LGMD2I, DMD, SMA, and Pompe disease, and only in lower leg for GNEM and thigh for IBM. CONCLUSIONS: Global muscle segment Fat% showed to be sensitive to change in most investigated neuromuscular disorders. As compared to individual muscle drawing, it is a faster and an easier approach to assess disease progression. The use of individual muscle ROIs, however, is still of interest for exploring selective muscle involvement. KEY POINTS: • MRI-based evaluation of fatty replacement in muscles is used as an outcome measure in the assessment of 1-year disease progression in 8 different neuromuscular diseases. • Different segmentation approaches, including global muscle segmentation, were evaluated for determining 1-year fat fraction changes in lower limb skeletal muscles. • Global muscle segment fat fraction has shown to be sensitive to change in lower leg and thigh in most of the investigated neuromuscular diseases.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Doenças Neuromusculares , Tecido Adiposo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Músculos , Doenças Neuromusculares/diagnóstico por imagem , Coxa da Perna/diagnóstico por imagem
11.
NMR Biomed ; : e4246, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037688

RESUMO

Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.

12.
NMR Biomed ; 32(9): e4115, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184793

RESUMO

Early studies have demonstrated that (total) magnesium was decreased in skeletal muscle of Duchenne muscular dystrophy (DMD) patients. Free intramuscular Mg2+ can be derived from 31 P NMRS measurements. The value of free intramuscular magnesium concentration ([Mg2+ ]) is highly dependent on precise knowledge of intracellular pH, which is abnormally alkaline in dystrophic muscle, possibly due to an expanded interstitial space, potentially causing an underestimation of [Mg2+ ]. We have recently shown that intracellular pH can be derived using 1 H NMRS of carnosine. Our aim was to determine whether 31 P NMRS-based [Mg2+ ] is, in fact, abnormally low in DMD patients, taking advantage of the 1 H NMRS-based pH. A comparative analysis was, therefore, made between [Mg2+ ] values calculated with both 1 H and 31 P NMRS-based approaches to determine pH in 25 DMD patients, on a 3-T clinical NMR scanner. [Mg2+ ] was also assessed with 31 P NMRS only in (forearm or leg) skeletal muscle of 60 DMD patients and 63 age-matched controls. Additionally, phosphodiester levels as well as quantitative NMRI indices including water T2 , fat fraction, contractile cross-sectional area and one-year changes were evaluated. The main finding was that the significant difference in [Mg2+ ] between DMD patients and controls was preserved even when the intracellular pH determined with 1 H NMRS was similar in both groups. Consequently, we observed that [Mg2+ ] is significantly lower in DMD patients compared with controls in the larger database where only 31 P NMRS data were obtained. Significant yet weak correlations existed between [Mg2+ ] and PDE, water T2 and fat fraction. We concluded that low [Mg2+ ] is an actual finding in DMD, whether intracellular pH is normal or alkaline, and that it is a likely consequence of membrane leakiness. The response of Mg2+ to therapeutic treatment remains to be investigated in neuromuscular disorders. Free [Mg2+ ] determination with 31 P NMRS is highly dependent on a precise knowledge of intracellular pH. The pH of Duchenne muscular dystrophy (DMD) patients, as determined by 31 P NMRS, is abnormally alkaline. We have recently shown that intracellular pH could be determined using 1 H NMRS of carnosine, and that intracellular pH was alkaline in a proportion of, but not all, DMD patients with a 31 P NMRS-based alkaline pH. Taking advantage of this 1 H NMRS-based intracellular pH, we found that free intramuscular [Mg2+ ] is in fact abnormally low in DMD patients.


Assuntos
Magnésio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fósforo/química , Espectroscopia de Prótons por Ressonância Magnética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Confiabilidade dos Dados , Humanos , Concentração de Íons de Hidrogênio , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
13.
NMR Biomed ; 31(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29130550

RESUMO

In recent years, quantitative nuclear magnetic resonance imaging and spectroscopy (NMRI and NMRS) have been used more systematically as outcome measures in natural history and clinical trial studies for Duchenne muscular dystrophy (DMD). Whereas most of these studies have emphasized the evaluation of the fat fraction as an assessment for disease severity, less focus has been placed on metabolic indices measured by NMRS. 31 P NMRS in DMD reveals an alkaline inorganic phosphate (Pi ) pool, originating from either leaky dystrophic myocytes or an increased interstitial space. 1 H NMRS, exploiting the pH-sensitive proton resonances of carnosine, an intracellular dipeptide, was used to distinguish between these two hypotheses. NMR data were obtained in 23 patients with DMD and 14 healthy subjects on a 3-T clinical NMR system. Both 31 P and 1 H NMRS data were acquired at the level of the gastrocnemius medialis muscle. A multi-slice multi-echo imaging acquisition was performed for the determination of water T2 and fat fraction in the same region of interest. Whereas nearly all patients with DMD showed an elevated pH compared with healthy controls when using 31 P NMRS, 1 H NMRS-determined pH was not systematically increased. As expected, the carnosine-based intracellular pH was never found to be alkaline in the absence of a concurrent Pi -based pH elevation. In addition, abnormal intracellular pH, based on carnosine, was never associated with normal water T2 values. We conclude that, in one group of patients, both 1 H and 31 P NMRS showed an alkaline pH, originating from the intracellular compartment and reflecting ionic dysregulation in dystrophic myocytes. In the other patients with DMD, intracellular pH was normal, but an alkaline Pi pool was still present, suggesting an extracellular origin, probably revealing an expanded interstitial volume fraction, often associated with fibrotic changes. The data demonstrate that 1 H NMRS could serve as a biomarker to assess the normalization of intramyocytic pH and sarcolemmal permeability following therapy inducing dystrophin expression in patients with DMD.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fósforo/química , Espectroscopia de Prótons por Ressonância Magnética , Encéfalo/metabolismo , Simulação por Computador , Humanos , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Cinética , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
14.
NMR Biomed ; 29(4): 431-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26814454

RESUMO

Skeletal muscle inflammation/necrosis and fat infiltration are strong indicators of disease activity and progression in many neuromuscular disorders. They can be assessed by muscle T2 relaxometry and water-fat separation techniques, respectively. In the present work, we exploited differences between water and fat T1 and T2 relaxivities by applying a bi-component extended phase graph (EPG) fitting approach to simultaneously quantify the muscle water T2 and fat fraction from standard multi-slice multi-echo (MSME) acquisitions in the presence of stimulated echoes. Experimental decay curves were adjusted to the theoretical model using either an iterative non-negative least-squares (NNLS) procedure or a pattern recognition approach. Twenty-two patients (age, 49 ± 18 years) were selected to cover a large range of muscle fat infiltration. Four cases of chronic or subchronic juvenile dermatomyositis (age, 8 ± 3 years) were investigated before and 3 months following steroid treatment. For control, five healthy volunteers (age, 25 ± 2 years) were recruited. All subjects underwent the MSME sequence and EPG fitting procedure. The EPG fitting algorithm allowed a precise estimation of water T2 and fat fraction in diseased muscle, even in the presence of large B1(+) inhomogeneities. In the whole cohort of patients, there was no overall correlation between water T2 values obtained with the proposed method and the fat fraction estimated inside muscle tissues (R(2) = 0.02). In the patients with dermatomyositis, there was a significant decrease in water T2 (-4.09 ± 3.7 ms) consequent to steroid treatment. The pattern recognition approach resulted in a 20-fold decrease in processing time relative to the iterative NNLS procedure. The fat fraction derived from the EPG fitting approach correlated well with the fat fraction derived from a standard three-point Dixon method (≈1.5% bias). The bi-component EPG fitting analysis is a precise tool to monitor muscle tissue disease activity and is able to handle bias introduced by fat infiltration and B1(+) inhomogeneities.


Assuntos
Tecido Adiposo/metabolismo , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Água/metabolismo , Adulto , Algoritmos , Criança , Feminino , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Coxa da Perna
15.
J Cachexia Sarcopenia Muscle ; 15(3): 1108-1120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613252

RESUMO

BACKGROUND: Finding sensitive clinical outcome measures has become crucial in natural history studies and therapeutic trials of neuromuscular disorders. Here, we focus on 1-year longitudinal data from quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31P MRS) in a placebo-controlled study of sirolimus for inclusion body myositis (IBM), also examining their links to functional, strength, and clinical parameters in lower limb muscles. METHODS: Quantitative MRI and 31P MRS data were collected at 3 T from a single site, involving 44 patients (22 on placebo, 22 on sirolimus) at baseline and year-1, and 21 healthy controls. Assessments included fat fraction (FF), contractile cross-sectional area (cCSA), and water T2 in global leg and thigh segments, muscle groups, individual muscles, as well as 31P MRS indices in quadriceps or triceps surae. Analyses covered patient-control comparisons, annual change assessments via standard t-tests and linear mixed models, calculation of standardized response means (SRM), and exploration of correlations between MRI, 31P MRS, functional, strength, and clinical parameters. RESULTS: The quadriceps and gastrocnemius medialis muscles had the highest FF values, displaying notable heterogeneity and asymmetry, particularly in the quadriceps. In the placebo group, the median 1-year FF increase in the quadriceps was 3.2% (P < 0.001), whereas in the sirolimus group, it was 0.7% (P = 0.033). Both groups experienced a significant decrease in cCSA in the quadriceps after 1 year (P < 0.001), with median changes of 12.6% for the placebo group and 5.5% for the sirolimus group. Differences in FF and cCSA changes between the two groups were significant (P < 0.001). SRM values for FF and cCSA were 1.3 and 1.4 in the placebo group and 0.5 and 0.8 in the sirolimus group, respectively. Water T2 values were highest in the quadriceps muscles of both groups, significantly exceeding control values in both groups (P < 0.001) and were higher in the placebo group than in the sirolimus group. After treatment, water T2 increased significantly only in the sirolimus group's quadriceps (P < 0.01). Multiple 31P MRS indices were abnormal in patients compared to controls and remained unchanged after treatment. Significant correlations were identified between baseline water T2 and FF at baseline and the change in FF (P < 0.001). Additionally, significant correlations were observed between FF, cCSA, water T2, and functional and strength outcome measures. CONCLUSIONS: This study has demonstrated that quantitative MRI/31P MRS can discern measurable differences between placebo and sirolimus-treated IBM patients, offering promise for future therapeutic trials in idiopathic inflammatory myopathies such as IBM.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Músculo Esquelético , Miosite de Corpos de Inclusão , Sirolimo , Humanos , Miosite de Corpos de Inclusão/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/diagnóstico por imagem , Sirolimo/uso terapêutico , Sirolimo/farmacologia , Pessoa de Meia-Idade , Idoso , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia
16.
J Magn Reson Imaging ; 35(3): 723-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22045623

RESUMO

PURPOSE: To evaluate whether hemodynamic refractory effects provoked by repeated visual stimulation can be detected and quantified at the single-subject level using a recently described hemodynamic response function (HRF) fitting algorithm. MATERIALS AND METHODS: Hemodynamic refractory effects were induced with an easily applicable functional MRI (fMRI) paradigm. A fitting method with inverse logit (IL) functions was applied to quantify net HRFs at the single-subject level with three interstimulus intervals (ISI; 1, 2, and 6 s). The model yielded amplitude, latencies, and width for each HRF. RESULTS: HRF fitting was possible in 44 of 51 healthy volunteers, with excellent goodness-of-fit (R(2) = 0.9745 ± 0.0241). Refractory effects were most pronounced for the 1-s ISI (P < 0.001) and had nearly disappeared for the 6-s ISI. CONCLUSION: Quantifying refractory effects in individuals was possible in 86.3% of normal subjects using the IL fitting algorithm. This setup may be suitable to explore such effects in individual patients.


Assuntos
Mapeamento Encefálico/métodos , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Análise de Variância , Feminino , Humanos , Masculino , Estimulação Luminosa , Valores de Referência
17.
Cephalalgia ; 32(11): 845-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22763498

RESUMO

OBJECTIVE: To summarize and evaluate proton ((1)H) and phosphorus ((31)P) magnetic resonance spectroscopy (MRS) findings in migraine. METHODS: A thorough review of (1)H and/or (31)P-MRS studies in any form of migraine published up to September 2011. RESULTS: Some findings were consistent in all studies, such as a lack of ictal/interictal brain pH change and a disturbed energy metabolism, the latter of which is reflected in a drop in phosphocreatine content, both in the resting brain and in muscle following exercise. In a recent interictal study ATP was found to be significantly decreased in the occipital lobe of migraine with aura patients, reinforcing the concept of a mitochondrial component to the migraine threshold, at least in a subgroup of patients. In several studies a correlation between the extent of the energy disturbance and the clinical phenotype severity was apparent. Less consistent but still congruent with a disturbed energy metabolism is an observed lactate increase in the occipital cortex of several migraine subtypes (MwA, migraine with prolonged aura). No increases in brain glutamate levels were found. CONCLUSION: The combined abnormalities found in MRS studies imply a mitochondrial component in migraine neurobiology. This could be due to a primary mitochondrial dysfunction or be secondary to, for example, alterations in brain excitability. The extent of variation in the data can be attributed to both the variable clinical inclusion criteria used and the variation in applied methodology. Therefore it is necessary to continue to optimize MRS methodology to gain further insights, especially concerning lactate and glutamate.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Transtornos de Enxaqueca/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos
18.
J Cachexia Sarcopenia Muscle ; 13(6): 2888-2897, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058852

RESUMO

BACKGROUND: Water T2 (T2H2O ) mapping is increasingly being used in muscular dystrophies to assess active muscle damage. It has been suggested as a surrogate outcome measure for clinical trials. Here, we investigated the prognostic utility of T2H2O to identify changes in muscle function over time in limb girdle muscular dystrophies. METHODS: Patients with genetically confirmed dysferlinopathy were assessed as part of the Jain Foundation Clinical Outcomes Study in dysferlinopathy. The cohort included 18 patients from two sites, both equipped with 3-tesla magnetic resonance imaging (MRI) systems from the same vendor. T2H2O value was defined as higher or lower than the median in each muscle bilaterally. The degree of deterioration on four functional tests over 3 years was assessed in a linear model against covariates of high or low T2H2O at baseline, age, disease duration, and baseline function. RESULTS: A higher T2H2O at baseline significantly correlated with a greater decline on functional tests in 21 out of 35 muscles and was never associated with slower decline. Higher baseline T2H2O in adductor magnus, vastus intermedius, vastus lateralis, and vastus medialis were the most sensitive, being associated bilaterally with greater decline in multiple timed tests. Patients with a higher than median baseline T2H2O (>40.6 ms) in the right vastus medialis deteriorated 11 points more on the North Star Ambulatory Assessment for Dysferlinopathy and lost an additional 86 m on the 6-min walk than those with a lower T2H2O (<40.6 ms). Optimum sensitivity and specificity thresholds for predicting decline were 39.0 ms in adductor magnus and vastus intermedius, 40.0 ms in vastus medialis, and 40.5 ms in vastus lateralis from different sites equipped with different MRI systems. CONCLUSIONS: In dysferlinopathy, T2H2O did not correlate with current functional ability. However, T2H2O at baseline was higher in patients who worsened more rapidly on functional tests. This suggests that inter-patient differences in functional decline over time may be, in part, explained by different severities of the active muscle damage, assessed by T2H2O measure at baseline. Significant challenges remain in standardizing T2H2O values across sites to allow determining globally applicable thresholds. The results from the present work are encouraging and suggest that T2H2O could be used to improve prognostication, patient selection, and disease modelling for clinical trials.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Água , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia
19.
J Cachexia Sarcopenia Muscle ; 13(3): 1850-1863, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373496

RESUMO

BACKGROUND: Natural history studies in neuromuscular disorders are vital to understand the disease evolution and to find sensitive outcome measures. We performed a longitudinal assessment of quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31 P MRS) outcome measures and evaluated their relationship with function in lower limb skeletal muscle of dysferlinopathy patients. METHODS: Quantitative MRI/31 P MRS data were obtained at 3 T in two different sites in 54 patients and 12 controls, at baseline, and three annual follow-up visits. Fat fraction (FF), contractile cross-sectional area (cCSA), and muscle water T2 in both global leg and thigh segments and individual muscles and 31 P MRS indices in the anterior leg compartment were assessed. Analysis included comparisons between patients and controls, assessments of annual changes using a linear mixed model, standardized response means (SRM), and correlations between MRI and 31 P MRS markers and functional markers. RESULTS: Posterior muscles in thigh and leg showed the highest FF values. FF at baseline was highly heterogeneous across patients. In ambulant patients, median annual increases in global thigh and leg segment FF values were 4.1% and 3.0%, respectively (P < 0.001). After 3 years, global thigh and leg FF increases were 9.6% and 8.4%, respectively (P < 0.001). SRM values for global thigh FF were over 0.8 for all years. Vastus lateralis muscle showed the highest SRM values across all time points. cCSA decreased significantly after 3 years with median values of 11.0% and 12.8% in global thigh and global leg, respectively (P < 0.001). Water T2 values in ambulant patients were significantly increased, as compared with control values (P < 0.001). The highest water T2 values were found in the anterior part of thigh and leg. Almost all 31 P MRS indices were significantly different in patients as compared with controls (P < 0.006), except for pHw , and remained, similar as to water T2 , abnormal for the whole study duration. Global thigh water T2 at baseline was significantly correlated to the change in FF after 3 years (ρ = 0.52, P < 0.001). There was also a significant relationship between the change in functional score and change in FF after 3 years in ambulant patients (ρ = -0.55, P = 0.010). CONCLUSIONS: This multi-centre study has shown that quantitative MRI/31 P MRS measurements in a heterogeneous group of dysferlinopathy patients can measure significant changes over the course of 3 years. These data can be used as reference values in view of future clinical trials in dysferlinopathy or comparisons with quantitative MRI/S data obtained in other limb-girdle muscular dystrophy subtypes.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Fósforo , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/patologia , Coxa da Perna , Água
20.
Cephalalgia ; 31(12): 1243-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21289000

RESUMO

BACKGROUND: Differences in brain energy metabolism have been found between migraine patients and controls in previous phosphorus magnetic resonance spectroscopy ((31)P-MRS) studies, most of them emphasizing migraine with aura (MwA). The aim of this study was to verify potential changes in resting-state brain energy metabolism in patients with migraine without aura (MwoA) compared to control subjects by (31)P-MRS at 3 tesla. METHODS: Quantification was performed using the phantom replacement technique. MRS measurements were performed interictally and in the medial occipital lobe of 19 MwoA patients and 26 age-matched controls. RESULTS: A significantly decreased phosphocreatine concentration ([PCr]) was found as in previous studies. While adenosine triphosphate concentration ([ATP]) was considered to be constant in previously published work, this study found a significant decrease in the measured [ATP] in MwoA patients. The inorganic phosphate ([P(i)]) and magnesium ([Mg(2+)]) concentrations were not significantly different between MwoA patients and controls. CONCLUSIONS: The altered metabolic concentrations indicate that the energy metabolism in MwoA patients is impaired, certainly in a subgroup of patients. The actual decrease in [ATP] adds further strength to the theory of the presence of a mitochondrial component in the pathophysiology of migraine.


Assuntos
Metabolismo Energético/fisiologia , Enxaqueca sem Aura/metabolismo , Lobo Occipital/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Fosfatos/análise , Fosfatos/metabolismo , Fosfocreatina/análise , Fosfocreatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA