Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Cell ; 35(1): 510-528, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342213

RESUMO

In nucleotide metabolism, nucleoside kinases recycle nucleosides into nucleotides-a process called nucleoside salvage. Nucleoside kinases for adenosine, uridine, and cytidine have been characterized from many organisms, but kinases for inosine and guanosine salvage are not yet known in eukaryotes and only a few such enzymes have been described from bacteria. Here we identified Arabidopsis thaliana PLASTID NUCLEOSIDE KINASE 1 (PNK1), an enzyme highly conserved in plants and green algae belonging to the Phosphofructokinase B family. We demonstrate that PNK1 from A. thaliana is located in plastids and catalyzes the phosphorylation of inosine, 5-aminoimidazole-4-carboxamide-1-ß-d-ribose (AICA ribonucleoside), and uridine but not guanosine in vitro, and is involved in inosine salvage in vivo. PNK1 mutation leads to increased flux into purine nucleotide catabolism and, especially in the context of defective uridine degradation, to over-accumulation of uridine and UTP as well as growth depression. The data suggest that PNK1 is involved in feedback regulation of purine nucleotide biosynthesis and possibly also pyrimidine nucleotide biosynthesis. We additionally report that cold stress leads to accumulation of purine nucleotides, probably by inducing nucleotide biosynthesis, but that this adjustment of nucleotide homeostasis to environmental conditions is not controlled by PNK1.


Assuntos
Inosina , Nucleosídeos , Inosina/metabolismo , Inosina/farmacologia , Nucleosídeos/metabolismo , Nucleotídeos , Nucleotídeos de Purina/genética , Nucleotídeos de Purina/metabolismo , Uridina
2.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117089

RESUMO

Pseudouridine is a noncanonical C-nucleoside containing a C-C glycosidic linkage between uracil and ribose. In the two-step degradation of pseudouridine, pseudouridine 5'-monophosphate glycosylase (PUMY) is responsible for the second step and catalyses the cleavage of the C-C glycosidic bond in pseudouridine 5'-monophosphate (ΨMP) into uridine and ribose 5'-phosphate, which are recycled via other metabolic pathways. Structural features of Escherichia coli PUMY have been reported, but the details of the substrate specificity of ΨMP were unknown. Here, we present three crystal structures of Arabidopsis thaliana PUMY in different ligation states and a kinetic analysis of ΨMP degradation. The results indicate that Thr149 and Asn308, which are conserved in the PUMY family, are structural determinants for recognizing the nucleobase of ΨMP. The distinct binding modes of ΨMP and ribose 5'-phosphate also suggest that the nucleobase, rather than the phosphate group, of ΨMP dictates the substrate-binding mode. An open-to-close transition of the active site is essential for catalysis, which is mediated by two α-helices, α11 and α12, near the active site. Mutational analysis validates the proposed roles of the active site residues in catalysis. Our structural and functional analyses provide further insight into the enzymatic features of PUMY towards ΨMP.


Assuntos
Arabidopsis , Pseudouridina , Pseudouridina/metabolismo , Cinética , Ribose/metabolismo , Escherichia coli/metabolismo , Nucleosídeos/metabolismo , Fosfatos , Catálise , Especificidade por Substrato , Cristalografia por Raios X
3.
J Biol Chem ; 298(5): 101869, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35346685

RESUMO

Pseudouridine, one major RNA modification, is catabolized into uracil and ribose-5'-phosphate by two sequential enzymatic reactions. In the first step, pseudouridine kinase (PUKI) phosphorylates pseudouridine to pseudouridine 5'-monophosphate. High-fidelity catalysis of pseudouridine by PUKI prevents possible disturbance of in vivo pyrimidine homeostasis. However, the molecular basis of how PUKI selectively phosphorylates pseudouridine over uridine with >100-fold greater efficiency despite minor differences in their Km values has not been elucidated. To investigate this selectivity, in this study we determined the structures of PUKI from Escherichia coli strain B (EcPUKI) in various ligation states. The structure of EcPUKI was determined to be similar to PUKI from Arabidopsis thaliana, including an α/ß core domain and ß-stranded small domain, with dimerization occurring via the ß-stranded small domain. In a binary complex, we show that Ser30 in the substrate-binding loop of the small domain mediates interactions with the hallmark N1 atom of pseudouridine nucleobase, causing conformational changes in its quaternary structure. Kinetic and fluorescence spectroscopic analyses also showed that the Ser30-mediated interaction is a prerequisite for conformational changes and subsequent catalysis by EcPUKI. Furthermore, S30A mutation or EcPUKI complexed with other nucleosides homologous to pseudouridine but lacking the pseudouridine-specific N1 atom did not induce such conformational changes, demonstrating the catalytic significance of the proposed Ser30-mediated interaction. These analyses provide structural and functional evidence for a pseudouridine-dependent conformational change of EcPUKI and its functional linkage to catalysis.


Assuntos
Arabidopsis , Escherichia coli/enzimologia , Pseudouridina , Biocatálise , Catálise , Cinética , Uridina
4.
Nucleic Acids Res ; 49(1): 491-503, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290549

RESUMO

RNA modifications can regulate the stability of RNAs, mRNA-protein interactions, and translation efficiency. Pseudouridine is a prevalent RNA modification, and its metabolic fate after RNA turnover was recently characterized in eukaryotes, in the plant Arabidopsis thaliana. Here, we present structural and biochemical analyses of PSEUDOURIDINE KINASE from Arabidopsis (AtPUKI), the enzyme catalyzing the first step in pseudouridine degradation. AtPUKI, a member of the PfkB family of carbohydrate kinases, is a homodimeric α/ß protein with a protruding small ß-strand domain, which serves simultaneously as dimerization interface and dynamic substrate specificity determinant. AtPUKI has a unique nucleoside binding site specifying the binding of pseudourine, in particular at the nucleobase, by multiple hydrophilic interactions, of which one is mediated by a loop from the small ß-strand domain of the adjacent monomer. Conformational transition of the dimerized small ß-strand domains containing active site residues is required for substrate specificity. These dynamic features explain the higher catalytic efficiency for pseudouridine over uridine. Both substrates bind well (similar Km), but only pseudouridine is turned over efficiently. Our studies provide an example for structural and functional divergence in the PfkB family and highlight how AtPUKI avoids futile uridine phosphorylation which in vivo would disturb pyrimidine homeostasis.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Adenosina Quinase/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Sequência Consenso , Cristalografia por Raios X , Magnésio/metabolismo , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Pseudouridina/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
5.
J Struct Biol ; 214(2): 107857, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395410

RESUMO

Phytohormone indole-3-acetic acid (IAA) plays a vital role in regulating plant growth and development. Tryptophan-dependent IAA biosynthesis participates in IAA homeostasis by producing IAA via two sequential reactions, which involve a conversion of tryptophan to indole-3-pyruvic acid (IPyA) by tryptophan aminotransferase (TAA1) followed by the irreversible formation of IAA in the second reaction. Pad-1 from Solanaceae plants regulates IAA levels by catalyzing a reverse reaction of the first step of IAA biosynthesis. Pad-1 is a pyridoxal phosphate (PLP)-dependent aminotransferase, with IPyA as the amino acceptor and l-glutamine as the amino donor. Currently, the structural and functional basis for the substrate specificity of Pad-1 remains poorly understood. In this study, we carried out structural and kinetic analyses of Pad-1 from Solanum melongena. Pad-1 is a homodimeric enzyme, with coenzyme PLP present between a central large α/ß domain and a protruding small domain. The active site of Pad-1 includes a vacancy near the phosphate group (P-side) and the 3'-O (O-side) of PLP. These features are distinct from those of TAA1, which is homologous in an overall structure with Pad-1 but includes only the P-side region in the active site. Kinetic analysis suggests that P-side residues constitute a binding pocket for l-glutamine, and O-side residues of Phe124 and Ile350 are involved in the binding of IPyA. These studies illuminate distinct differences in the active site between Pad-1 and TAA1, and provide structural and functional insights into the substrate specificity of Pad-1.


Assuntos
Transaminases , Triptofano , Glutamina , Homeostase/fisiologia , Ácidos Indolacéticos/química , Indóis , Cinética , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Triptofano Transaminase/metabolismo
6.
J Biol Chem ; 297(4): 101143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473996

RESUMO

Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + ß fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75-Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications.


Assuntos
Compostos de Anilina/química , Dinitrobenzenos/química , Herbicidas/química , Nitrorredutases/química , Sphingomonadaceae/enzimologia , Sulfanilamidas/química , Sítios de Ligação , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Biol Chem ; 295(17): 5751-5760, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32198136

RESUMO

In cyanobacteria, metabolic pathways that use the nitrogen-rich amino acid arginine play a pivotal role in nitrogen storage and mobilization. The N-terminal domains of two recently identified bacterial enzymes: ArgZ from Synechocystis and AgrE from Anabaena, have been found to contain an arginine dihydrolase. This enzyme provides catabolic activity that converts arginine to ornithine, resulting in concomitant release of CO2 and ammonia. In Synechocystis, the ArgZ-mediated ornithine-ammonia cycle plays a central role in nitrogen storage and remobilization. The C-terminal domain of AgrE contains an ornithine cyclodeaminase responsible for the formation of proline from ornithine and ammonia production, indicating that AgrE is a bifunctional enzyme catalyzing two sequential reactions in arginine catabolism. Here, the crystal structures of AgrE in three different ligation states revealed that it has a tetrameric conformation, possesses a binding site for the arginine dihydrolase substrate l-arginine and product l-ornithine, and contains a binding site for the coenzyme NAD(H) required for ornithine cyclodeaminase activity. Structure-function analyses indicated that the structure and catalytic mechanism of arginine dihydrolase in AgrE are highly homologous with those of a known bacterial arginine hydrolase. We found that in addition to other active-site residues, Asn-71 is essential for AgrE's dihydrolase activity. Further analysis suggested the presence of a passage for substrate channeling between the two distinct AgrE active sites, which are situated ∼45 Šapart. These results provide structural and functional insights into the bifunctional arginine dihydrolase-ornithine cyclodeaminase enzyme AgrE required for arginine catabolism in Anabaena.


Assuntos
Amônia-Liases/química , Anabaena/química , Proteínas de Bactérias/química , Hidrolases/química , Amônia-Liases/genética , Amônia-Liases/metabolismo , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/genética , Hidrolases/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato
8.
J Struct Biol ; 212(3): 107632, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980521

RESUMO

Indole-3-acetic acid (IAA), the major form of the plant hormone auxin, regulates almost every aspect of plant growth and development. Therefore, auxin homeostasis is an essential process in plants. Different metabolic routes are involved in auxin homeostasis, but the catabolic pathway has remained elusive until recent studies identified DIOXYGENASE FOR AUXIN OXIDATION (DAO) from rice and Arabidopsis thaliana. DAO, a member of the 2-oxoglutarate/Fe(II)-dependent oxygenase (2ODO) family, constitutes a major enzyme for IAA catabolism. This enzyme catalyzes, with the cosubstrate 2-oxoglutarate, the conversion of IAA into 2-oxoindole-3-acetic acid, a functionally inactive oxidative product of IAA. Here, we report a crystal structure of the unliganded DAO1 from A. thaliana (AtDAO1) and its complex with 2-oxoglutarate. AtDAO1 is structurally homologous with members of the 2ODO family but exhibits unique features in the prime substrate IAA binding site. We provide structural analyses of a putative binding site for IAA, supporting possible structural determinants for the substrate specificity of AtDAO1 toward IAA.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Ácidos Indolacéticos/química , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Dioxigenases/química , Homeostase/fisiologia , Reguladores de Crescimento de Plantas/química , Raízes de Plantas/química , Especificidade por Substrato
9.
J Struct Biol ; 206(1): 110-118, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822455

RESUMO

Nitrogen remobilization is a key issue in plants. Recent studies in Arabidopsis thaliana have revealed that nucleoside catabolism supplies xanthine, a nitrogen-rich compound, to the purine ring catabolic pathway, which liberates ammonia from xanthine for reassimilation into amino acids. Similarly, pyrimidine nuclosides are degraded and the pyrimidine bases are fully catabolized. During nucleoside hydrolysis, ribose is released, and ATP-dependent ribokinase (RBSK) phosphorylates ribose to ribose-5'-phosphate to allow its entry into central metabolism recycling the sugar carbons from nucleosides. In this study, we report the crystal structure of RBSK from Arapidopsis thaliana (AtRBSK) in three different ligation states: an unliganded state, a ternary complex with ribose and ATP, and a binary complex with ATP in the presence of Mg2+. In the monomeric conformation, AtRBSK is highly homologous to bacterial RBSKs, including the binding sites for a monovalent cation, ribose, and ATP. Its dimeric conformation, however, does not exhibit the noticeable ligand-induced changes that were observed in bacterial orthologs. Only in the presence of Mg2+, ATP in the binary complex adopts a catalytically competent conformation, providing a mode of action for Mg2+ in AtRBSK activity. The structural data combined with activity analyses of mutants allowed assignment of functional roles for the active site residues. Overall, this study provides the first structural characterization of plant RBSK, and experimentally validates a previous hypothetical model concerning the general reaction mechanism of RBSK.


Assuntos
Proteínas de Arabidopsis/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA/métodos , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Conformação Proteica , Ribose/química , Ribose/metabolismo , Homologia de Sequência de Aminoácidos
10.
J Struct Biol ; 200(2): 118-123, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28919350

RESUMO

The fungal pathogen Cryptococcus neoformans is a causative agent of meningoencephalitis in humans. For its pathogenicity, the inositol polyphosphate biosynthetic pathway plays critical roles. Recently, Ipk1 from C. neoformans (CnIpk1) was identified as an inositol 1,3,4,5,6-pentakisphosphate 2-kinase that catalyzes the phosphorylation of IP5 to form IP6, a substrate for subsequent reaction to produce inositol pyrophosphates, such as PP-IP5/IP7. Furthermore, it was shown that deletion of IPK1 significantly reduces the virulence of C. neoformans, indicating that Ipk1 is a major virulence contributor. In this study, we determined a crystal structure of the apo-form of CnIpk1 at 2.35Å resolution, the first structure for a fungal Ipk1, using a single-wavelength anomalous dispersion method. Even with a low sequence similarity of 26-28%, its overall structure resembles two other Ipk1 orthologs from Arabidopsis thaliana (AtIpk1) and Mus musculus (MmIpk1), and the most crucial residues in the active site are conserved. Unlike AtIpk1 and MmIpk1, however, metal-binding sites for structural stabilization and conformational variations are absent in CnIpk1. The binding environments for substrate IP5 could be inferred by the two different binding sites for sulfate ion in CnIpk1. Taken together, these observations suggest structural similarities and discrepancies for fungal Ipk1 among members of the Ipk1 family and provide structural information for the possible development of drug design for treatment of cryptococcosis.


Assuntos
Domínio Catalítico/genética , Cryptococcus neoformans/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Arabidopsis/enzimologia , Sítios de Ligação/genética , Criptococose/tratamento farmacológico , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cristalografia por Raios X , Desenho de Fármacos , Camundongos , Estrutura Secundária de Proteína
11.
J Biol Chem ; 291(29): 15185-95, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226606

RESUMO

In Burkholderia species, the production of oxalate, an acidic molecule, is a key event for bacterial growth in the stationary phase. Oxalate plays a central role in maintaining environmental pH, which counteracts inevitable population-collapsing alkaline toxicity in amino acid-based culture medium. In the phytopathogen Burkholderia glumae, two enzymes are responsible for oxalate production. First, the enzyme oxalate biosynthetic component A (ObcA) catalyzes the formation of a tetrahedral C6-CoA adduct from the substrates acetyl-CoA and oxaloacetate. Then the ObcB enzyme liberates three products from the C6-CoA adduct: oxalate, acetoacetate, and CoA. Interestingly, these two stepwise reactions are catalyzed by a single bifunctional enzyme, Obc1, from Burkholderia thailandensis and Burkholderia pseudomallei Obc1 has an ObcA-like N-terminal domain and shows ObcB activity in its C-terminal domain despite no sequence homology with ObcB. We report the crystal structure of Obc1 in its apo and glycerol-bound form at 2.5 Å and 2.8 Å resolution, respectively. The Obc1 N-terminal domain is essentially identical both in structure and function to that of ObcA. Its C-terminal domain has an α/ß hydrolase fold that has a catalytic triad for oxalate production and a novel oxyanion hole distinct from the canonical HGGG motif in other α/ß hydrolases. Functional analyses through mutagenesis studies suggested that His-934 is an additional catalytic acid/base for its lyase activity and liberates two additional products, acetoacetate and CoA. These results provide structural and functional insights into bacterial oxalogenesis and an example of divergent evolution of the α/ß hydrolase fold, which has both hydrolase and lyase activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Hidrolases/química , Hidrolases/metabolismo , Ácido Oxálico/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Burkholderia/genética , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Genes Bacterianos , Hidrolases/genética , Cinética , Modelos Moleculares , Domínios Proteicos , Homologia de Sequência de Aminoácidos
12.
Proc Natl Acad Sci U S A ; 111(52): 18613-8, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512488

RESUMO

Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact ß-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 µM and 0.87 µM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Dobramento de Proteína , Multimerização Proteica , Fatores de Transcrição/química , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Struct Biol ; 194(3): 395-403, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016285

RESUMO

The glyoxylate cycle bypasses a CO2-generating step in the tricarboxylic acid (TCA) cycle and efficiently assimilates C2 compounds into intermediates that can be used in later steps of the TCA cycle. It plays an essential role in pathogen survival during host infection such that the enzymes involved in this cycle have been suggested as potential drug targets against human pathogens. Isocitrate lyase (ICL) catalyzes the first-step reaction of the glyoxylate cycle, using isocitrate from the TCA cycle as the substrate to produce succinate and glyoxylate. In this study we report the crystal structure of Magnaporthe oryzae ICL in both the ligand-free form and as a complex with Mg(2+), glyoxylate, and glycerol, as well as the structure of the Fusarium graminearum ICL complexed with Mn(2+) and malonate. We also describe the ligand-induced conformational changes in the catalytic loop and C-terminal region, both of which are essential for catalysis. Using various mutant ICLs in an activity assay, we gained insight into the function of residues within the active site. These structural and functional analyses provide detailed information with regard to fungal ICLs.


Assuntos
Fusarium/enzimologia , Isocitrato Liase/química , Magnaporthe/enzimologia , Domínio Catalítico , Ciclo do Ácido Cítrico , Cristalografia por Raios X , Glioxilatos , Interações Hospedeiro-Patógeno , Ligantes , Conformação Proteica
14.
Mol Microbiol ; 97(5): 942-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26036360

RESUMO

Several Fusarium species produce the polyketide mycotoxin zearalenone (ZEA), a causative agent of hyperestrogenic syndrome in animals that is often found in F. graminearum-infected cereals in temperate regions. The ZEA biosynthetic cluster genes PKS4, PKS13, ZEB1 and ZEB2 encode a reducing polyketide synthase, a non-reducing polyketide synthase, an isoamyl alcohol oxidase and a transcription factor respectively. In this study, the production of two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum via an alternative promoter was characterized. ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggers the induction of both ZEB2L and ZEB2S transcription. ZEB2L and ZEB2S interact with each other to form a heterodimer that regulates ZEA production by reducing the binding affinity of ZEB2L for the ZEB2L gene promoter. Our study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production; this regulatory mechanism is similar to that observed in higher eukaryotes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zearalenona/biossíntese , Grão Comestível/química , Retroalimentação Fisiológica , Proteínas Fúngicas/química , Fusarium/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Homeostase , Zíper de Leucina , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Isoformas de Proteínas , Multimerização Proteica , Fatores de Transcrição/química , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido , Zearalenona/farmacologia
15.
J Struct Biol ; 189(3): 276-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681297

RESUMO

Plants have evolved to protect themselves against pathogen attack; in these competitions, many Gram-negative bacteria translocate pathogen-originated proteins known as effectors directly into plant cells to interfere with cellular processes. Effector-triggered immunity (ETI) is a plant defense mechanism in which plant resistance proteins recognize the presence of effectors and initiate immune responses. Enhanced disease susceptibility 1 (EDS1) in Arabidopsis thaliana serves as a central node protein for basal immune resistance and ETI by interacting dynamically with other immune regulatory or resistance proteins. Recently, the effector HopA1 from Pseudomonas syringae was shown to affect these EDS1 complexes by binding EDS1 directly and activating the immune response signaling pathway. Here, we report the crystal structure of the effector HopA1 from P. syringae pv. syringae strain 61 and tomato strain DC3000. HopA1, a sequence-unrelated protein to EDS1, has an α+ß fold in which the central antiparallel ß-sheet is flanked by helices. A similar structural domain, an α/ß fold, is one of the two domains in both EDS1 and the EDS1-interacting protein SAG101, and plays a crucial role in forming the EDS1 complex. Further analyses suggest structural similarity and differences between HopA1 and the α/ß fold of SAG101, as well as between two HopA1s from different pathovars. Our structural analysis provides a foundation for understanding the molecular basis of the effect of HopA1 on plant immunity.


Assuntos
Proteínas de Bactérias/química , Pseudomonas syringae/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína
16.
J Biol Chem ; 289(16): 11465-11475, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24616091

RESUMO

The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (ß/α)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following α1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr(322) as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Ácido Oxálico/metabolismo , Percepção de Quorum/fisiologia , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Burkholderia/genética , Citrato (si)-Sintase/genética , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Estrutura Terciária de Proteína
17.
Mol Microbiol ; 92(2): 316-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24641441

RESUMO

Bacteriophage SPN1S infects the pathogenic Gram-negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane-permeabilized Gram-negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram-negative bacteria background, the α-helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane-permeabilized Escherichia coli. The three-helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane-permeabilized E. coli and was therefore proposed as the peptidoglycan-binding domain. These structural and functional features suggest that endolysin from a Gram-negative bacterial background has peptidoglycan-binding activity and performs glycoside hydrolase activity through the catalytic dyad.


Assuntos
Endopeptidases/química , Endopeptidases/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Peptidoglicano/metabolismo , Fagos de Salmonella/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Hidrólise , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Salmonella typhimurium/virologia
18.
Toxicol Appl Pharmacol ; 285(3): 159-69, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25902338

RESUMO

Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E. coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located.


Assuntos
Citocromo P-450 CYP1A1/genética , Proteínas Recombinantes/genética , Sequência de Aminoácidos , Animais , Benzo(a)pireno/metabolismo , Células CHO , Clonagem Molecular , Cricetulus , Citocromo P-450 CYP1A1/metabolismo , Escherichia coli/genética , Heme/química , Humanos , Hidroxilação , Microssomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Oxazinas/metabolismo , Polimorfismo Genético , Conformação Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
Biochemistry ; 53(4): 735-45, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24417435

RESUMO

A major problem of genome annotation is the assignment of a function to a large number of genes of known sequences through comparison with a relatively small number of experimentally characterized genes. Because functional divergence is a widespread phenomenon in gene evolution, the transfer of a function to homologous genes is not a trivial exercise. Here, we show that a family of homologous genes which are found in purine catabolism clusters and have hypothetically equivalent functions can be divided into two distinct groups based on the genomic distribution of functionally related genes. One group (UGLYAH) encodes proteins that are able to release ammonia from (S)-ureidoglycine, the enzymatic product of allantoate amidohydrolase (AAH), but are unable to degrade allantoate. The presence of a gene encoding UGLYAH implies the presence of AAH in the same genome. The other group (UGLYAH2) encodes proteins that are able to release ammonia from (S)-ureidoglycine as well as urea from allantoate. The presence of a gene encoding UGLYAH2 implies the absence of AAH in the same genome. Because (S)-ureidoglycine is an unstable compound that is only formed by the AAH reaction, the in vivo function of this group of enzymes must be the release of urea from allantoate (allantoicase activity), while ammonia release from (S)-ureidoglycine is an accessory activity that evolved as a specialized function in a group of genes in which the coexistence with AAH was established. Insights on the active site modifications leading to a change in the enzyme activity were provided by comparison of three-dimensional structures of proteins belonging to the two different groups and by site-directed mutagenesis. Our results indicate that when the neighborhood of uncharacterized genes suggests a role in the same process or pathway of a characterized homologue, a detailed analysis of the gene context is required for the transfer of functional annotations.


Assuntos
Aminoidrolases/química , Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Glicina/análogos & derivados , Purinas/química , Ureia/análogos & derivados , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Aminoidrolases/genética , Amônia/química , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Glicina/química , Cinética , Redes e Vias Metabólicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Filogenia , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Ureia/química , Ureo-Hidrolases/química , Ureo-Hidrolases/genética
20.
J Biol Chem ; 288(22): 15760-70, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589281

RESUMO

Succinic semialdehyde dehydrogenase (SSADH) from cyanobacterium Synechococcus differs from other SSADHs in the γ-aminobutyrate shunt. Synechococcus SSADH (SySSADH) is a TCA cycle enzyme and completes a 2-oxoglutarate dehydrogenase-deficient cyanobacterial TCA cycle through a detour metabolic pathway. SySSADH produces succinate in an NADP(+)-dependent manner with a single cysteine acting as the catalytic residue in the catalytic loop. Crystal structures of SySSADH were determined in their apo form, as a binary complex with NADP(+) and as a ternary complex with succinic semialdehyde and NADPH, providing details about the catalytic mechanism by revealing a covalent adduct of a cofactor with the catalytic cysteine in the binary complex and a proposed thiohemiacetal intermediate in the ternary complex. Further analyses showed that SySSADH is an oxidation-sensitive enzyme and that the formation of the NADP-cysteine adduct is a kinetically preferred event that protects the catalytic cysteine from H2O2-dependent oxidative stress. These structural and functional features of SySSADH provide a molecular basis for cofactor-dependent oxidation protection in 1-Cys SSADH, which is unique relative to other 2-Cys SSADHs employing a redox-dependent formation of a disulfide bridge.


Assuntos
Proteínas de Bactérias/química , NADP/química , Succinato-Semialdeído Desidrogenase/química , Synechococcus/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , NADP/metabolismo , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos da radiação , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Succinato-Semialdeído Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA