Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445699

RESUMO

Norepinephrine plays an important role in modulating memory through its beta-adrenergic receptors (Adrß: ß1, ß2 and ß3). Here, we hypothesized that multisensory stimulation would reverse memory impairment caused by the inactivation of Adrß3 (Adrß3KO) with consequent inhibition of sustained glial-mediated inflammation. To test this, 21- and 86-day-old Adrß3KO mice were exposed to an 8-week multisensory stimulation (MS) protocol that comprised gustatory and olfactory stimuli of positive and negative valence; intellectual challenges to reach food; the use of hidden objects; and the presentation of food in ways that prompted foraging, which was followed by analysis of GFAP, Iba-1 and EAAT2 protein expression in the hippocampus (HC) and amygdala (AMY). The MS protocol reduced GFAP and Iba-1 expression in the HC of young mice but not in older mice. While this protocol restored memory impairment when applied to Adrß3KO animals immediately after weaning, it had no effect when applied to adult animals. In fact, we observed that aging worsened the memory of Adrß3KO mice. In the AMY of Adrß3KO older mice, we observed an increase in GFAP and EAAT2 expression when compared to wild-type (WT) mice that MS was unable to reduce. These results suggest that a richer and more diverse environment helps to correct memory impairment when applied immediately after weaning in Adrß3KO animals and indicates that the control of neuroinflammation mediates this response.


Assuntos
Transtornos da Memória , Receptores Adrenérgicos beta , Camundongos , Animais , Masculino , Transtornos da Memória/genética , Transtornos da Memória/terapia , Transtornos da Memória/metabolismo , Receptores Adrenérgicos beta/metabolismo , Hipocampo/metabolismo , Norepinefrina/metabolismo
2.
Endocr Pract ; 28(3): 257-264, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890786

RESUMO

OBJECTIVE: Patient-centered studies have shown that several patients on thyroid hormone replacement therapy for hypothyroidism exhibit persistent symptoms, including "brain fog." Here, we aimed to determine which of these specific symptoms are associated with brain fog, identify patient-reported factors that modify these symptoms, and identify patient concerns related to brain fog not included in thyroid-specific questionnaires. METHODS: A survey on brain fog symptoms adapted from thyroid-specific patient-reported outcome was distributed online. Textual data analysis was performed to identify common areas of concern from open-ended survey responses. RESULTS: A total of 5170 participants reporting brain fog while being treated for hypothyroidism were included in the analysis. Of these, 2409 (46.6%) participants reported symptom onset prior to the diagnosis of hypothyroidism, and 4096 (79.2%) participants experienced brain fog symptoms frequently. Of the symptoms listed, participants associated fatigue and forgetfulness most frequently with brain fog. More rest was the most common factor provided for improving symptoms. The textual data analysis identified areas of concern that are not often included in thyroid-specific quality of life questionnaires, including a focus on the diagnosis of hypothyroidism, the types and doses of medications, and the patient-doctor relationship. CONCLUSION: Brain fog in patients treated for hypothyroidism was associated most frequently with fatigue and cognitive symptoms. Several additional areas of patient concern were found to be associated with brain fog, which are not typically addressed in thyroid-specific questionnaires.


Assuntos
Hipotireoidismo , Qualidade de Vida , Encéfalo , Terapia de Reposição Hormonal , Humanos , Hipotireoidismo/diagnóstico , Hipotireoidismo/tratamento farmacológico , Inquéritos e Questionários , Tiroxina/uso terapêutico
3.
Metab Brain Dis ; 37(8): 2735-2750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951206

RESUMO

Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.


Assuntos
Doença de Alzheimer , Tri-Iodotironina , Animais , Camundongos , Masculino , Tri-Iodotironina/farmacologia , Tri-Iodotironina/uso terapêutico , Doença de Alzheimer/metabolismo , Depressão/tratamento farmacológico , Quinase 3 da Glicogênio Sintase , Camundongos Transgênicos , Hormônios Tireóideos/metabolismo , Modelos Animais de Doenças
4.
Proc Natl Acad Sci U S A ; 112(45): 14018-23, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508642

RESUMO

Thyroid hormone binds to nuclear receptors and regulates gene transcription. Here we report that in mice, at around the first day of life, there is a transient surge in hepatocyte type 2 deiodinase (D2) that activates the prohormone thyroxine to the active hormone triiodothyronine, modifying the expression of ∼165 genes involved in broad aspects of hepatocyte function, including lipid metabolism. Hepatocyte-specific D2 inactivation (ALB-D2KO) is followed by a delay in neonatal expression of key lipid-related genes and a persistent reduction in peroxisome proliferator-activated receptor-γ expression. Notably, the absence of a neonatal D2 peak significantly modifies the baseline and long-term hepatic transcriptional response to a high-fat diet (HFD). Overall, changes in the expression of approximately 400 genes represent the HFD response in control animals toward the synthesis of fatty acids and triglycerides, whereas in ALB-D2KO animals, the response is limited to a very different set of only approximately 200 genes associated with reverse cholesterol transport and lipase activity. A whole genome methylation profile coupled to multiple analytical platforms indicate that 10-20% of these differences can be related to the presence of differentially methylated local regions mapped to sites of active/suppressed chromatin, thus qualifying as epigenetic modifications occurring as a result of neonatal D2 inactivation. The resulting phenotype of the adult ALB-D2KO mouse is dramatic, with greatly reduced susceptibility to diet-induced steatosis, hypertriglyceridemia, and obesity.


Assuntos
Suscetibilidade a Doenças/enzimologia , Fígado Gorduroso/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hepatócitos/metabolismo , Iodeto Peroxidase/metabolismo , Obesidade/enzimologia , Análise de Variância , Animais , Animais Recém-Nascidos , Calorimetria Indireta , Metilação de DNA , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Perfilação da Expressão Gênica , Hibridização In Situ , Camundongos , Camundongos Knockout , Análise em Microsséries , Obesidade/etiologia , Tri-Iodotironina/sangue
5.
J Physiol ; 594(18): 5255-69, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302464

RESUMO

KEY POINTS: In skeletal muscle, physical exercise and thyroid hormone mediate the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a) expression that is crucial to skeletal muscle mitochondrial function. The expression of type 2 deiodinase (D2), which activates thyroid hormone in skeletal muscle is upregulated by acute treadmill exercise through a ß-adrenergic receptor-dependent mechanism. Pharmacological block of D2 or disruption of the Dio2 gene in skeletal muscle fibres impaired acute exercise-induced PGC-1a expression. Dio2 disruption also impaired muscle PGC-1a expression and mitochondrial citrate synthase activity in chronically exercised mice. ABSTRACT: Thyroid hormone promotes expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1a), which mediates mitochondrial biogenesis and oxidative capacity in skeletal muscle (SKM). Skeletal myocytes express the type 2 deiodinase (D2), which generates 3,5,3'-triiodothyronine (T3 ), the active thyroid hormone. To test whether D2-generated T3 plays a role in exercise-induced PGC-1a expression, male rats and mice with SKM-specific Dio2 inactivation (SKM-D2KO or MYF5-D2KO) were studied. An acute treadmill exercise session (20 min at 70-75% of maximal aerobic capacity) increased D2 expression/activity (1.5- to 2.7-fold) as well as PGC-1a mRNA levels (1.5- to 5-fold) in rat soleus muscle and white gastrocnemius muscle and in mouse soleus muscle, which was prevented by pretreatment with 1 mg (100 g body weight)(-1) propranolol or 6 mg (100 g body weight)(-1) iopanoic acid (5.9- vs. 2.8-fold; P < 0.05), which blocks D2 activity . In the SKM-D2KO mice, acute treadmill exercise failed to induce PGC-1a fully in soleus muscle (1.9- vs. 2.8-fold; P < 0.05), and in primary SKM-D2KO myocytes there was only a limited PGC-1a response to 1 µm forskolin (2.2- vs. 1.3-fold; P < 0.05). Chronic exercise training (6 weeks) increased soleus muscle PGC-1a mRNA levels (∼25%) and the mitochondrial enzyme citrate synthase (∼20%). In contrast, PGC-1a expression did not change and citrate synthase decreased by ∼30% in SKM-D2KO mice. The soleus muscle PGC-1a response to chronic exercise was also blunted in MYF5-D2KO mice. In conclusion, acute treadmill exercise increases SKM D2 expression through a ß-adrenergic receptor-dependent mechanism. The accelerated conversion of T4 to T3 within myocytes mediates part of the PGC-1a induction by treadmill exercise and its downstream effects on mitochondrial function.


Assuntos
Iodeto Peroxidase/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Condicionamento Físico Animal/fisiologia , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Glicemia/análise , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Expressão Gênica , Iodeto Peroxidase/genética , Ácido Láctico/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Ratos Wistar , Tiroxina/sangue , Tri-Iodotironina/sangue , Iodotironina Desiodinase Tipo II
6.
Endocrinology ; 165(7)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38836615

RESUMO

About half of the world population carries at least one allele of the Ala92-DIO2, which slows down the activity of the type 2 deiodinase (D2), the enzyme that activates T4 to T3. Carrying the Ala92-DIO2 allele has been associated with increased body mass index and insulin resistance, but this has not been reproduced in all populations. To test if the genetic background affects the impact of this polymorphism, here we studied the genetically distant C57Bl/6J (B6) and FVB/N (FVB) mice carrying the Ala92-Dio2 allele as compared to control mice carrying the Thr92-Dio2 allele. Whereas B6-Ala92-Dio2 and B6-Thr92-Dio2 mice-fed chow or high-fat diet-behaved metabolically similar in studies using indirect calorimetry, glucose- and insulin tolerance tests, and measuring white adipose tissue (WAT) weight and liver steatosis, major differences were observed between FVB-Ala92-Dio2 and FVB-Thr92-Dio2 mice: carrying the Ala92-Dio2 allele (on a chow diet) resulted in hypercholesterolemia, smaller WAT pads, hepatomegaly, steatosis, and transcriptome changes in the interscapular brown adipose tissue (iBAT) typical of ER stress and apoptosis. Acclimatization at thermoneutrality (30 °C) eliminated most of the metabolic phenotype, indicating that impaired adaptive (BAT) thermogenesis can be involved. In conclusion, the metabolic impact of carrying the Ala92-Dio2 allele depends greatly on the genetic background of the mouse, varying from no phenotype in B6 mice to a major phenotype in FVB mice. These results will help the planning of future clinical trials studying the Thr92Ala-DIO2 polymorphism and may explain why some clinical studies performed in different populations across the globe have obtained inconsistent results.


Assuntos
Iodeto Peroxidase , Iodotironina Desiodinase Tipo II , Camundongos Endogâmicos C57BL , Animais , Masculino , Iodeto Peroxidase/genética , Camundongos , Dieta Hiperlipídica , Patrimônio Genético , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Polimorfismo Genético , Resistência à Insulina/genética , Fígado Gorduroso/genética
7.
Endocrine ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740833

RESUMO

INTRODUCTION: Mutations and single nucleotide polymorphisms (SNPs) in the genes encoding the network of proteins involved in thyroid hormone signaling (TH) may have implications for the effectiveness of the treatment of hypothyroidism with LT4. It is conceivable that loss-of-function mutations or SNPs impair the ability of LT4 to be activated to T3, reach its targets, and ultimately resolve symptoms of hypothyroidism. Some of these patients do benefit from therapy containing LT4 and LT3. METHODS: Here, we reviewed the PubMed and examined gene mutations and SNPs in the TH cellular transporters, deiodinases, and TH receptors, along with their impact on TH signaling, and potential clinical implications. RESULTS: In some mechanisms, such as the Thr92Ala-DIO2 SNP, there is a compelling rationale for reduced T4 to T3 activation that limits the effectiveness of LT4 to restore euthyroidism. In other mechanisms, a potential case can be made but more studies with a larger number of individuals are needed. DISCUSSION/CONCLUSION: Understanding the clinical impact of the genetic makeup of LT4-treated patients may help in the preemptive identification of those individuals that would benefit from therapy containing LT3.

8.
Endocrinology ; 164(12)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864846

RESUMO

The regulation of thyroid activity and thyroid hormone (TH) secretion is based on feedback mechanisms that involve the anterior pituitary TSH and medial basal hypothalamus TSH-releasing hormone. Plasma T3 levels can be "sensed" directly by the anterior pituitary and medial basal hypothalamus; plasma T4 levels require local conversion of T4 to T3, which is mediated by the type 2 deiodinase (D2). To study D2-mediated T4 to T3 conversion and T3 production in the anterior pituitary gland, we used mouse pituitary explants incubated with 125I-T4 for 48 hours to measure T3 production at different concentrations of free T4. The results were compared with cultures of D1- or D2-expressing cells, as well as freshly isolated mouse tissue. These studies revealed a unique regulation of the D2 pathway in the anterior pituitary gland, distinct from that observed in nonpituitary tissues. In the anterior pituitary, increasing T4 levels reduced D2 activity slightly but caused a direct increase in T3 production. However, the same changes in T4 levels decreased T3 production in human HSkM cells and murine C2C12 cells (both skeletal muscle) and mouse bone marrow tissue, which reached zero at 50 pM free T4. In contrast, the increase in T4 levels caused the pig kidney LLC-PK1 cells and kidney fragments to proportionally increase T3 production. These findings have important implications for both physiology and clinical practice because they clarify the mechanism by which fluctuations in plasma T4 levels are transduced in the anterior pituitary gland to mediate the TSH feedback mechanism.


Assuntos
Radioisótopos do Iodo , Tiroxina , Camundongos , Humanos , Animais , Suínos , Tiroxina/metabolismo , Tireotropina , Tri-Iodotironina/metabolismo , Retroalimentação , Hipófise/metabolismo
9.
Metabolites ; 12(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35888752

RESUMO

The Thr92Ala-Dio2 polymorphism has been associated with reduced cognition in 2-month-old male mice and increased risk for cognitive impairment and Alzheimer's disease in African Americans. This has been attributed to reduced thyroid hormone (TH) signaling and endoplasmic reticulum (ER) stress in the brain. Here we studied the Thr92Ala-Dio2 mouse model and saw that older male mice (7-8-month-old) exhibited a more severe cognition impairment, which extended to different aspects of declarative and working memories. A similar phenotype was observed in 4-5-month-old female mice. There were no structural alterations in the prefrontal cortex (PFC) and hippocampus of the Thr92Ala-Dio2 mouse. Nonetheless, in both male and female PFC, there was an enrichment in genes associated with TH-dependent processes, ER stress, and Golgi apparatus, while in the hippocampus there was additional enrichment in genes associated with inflammation and apoptosis. Reduced TH signaling remains a key mechanism of disease given that short-term treatment with L-T3 rescued the cognitive phenotype observed in males and females. We conclude that in mice, age is an additional risk factor for cognitive impairment associated with the Thr92Ala-Dio2 polymorphism. In addition to reduced TH signaling, ER-stress, and involvement of the Golgi apparatus, hippocampal inflammation and apoptosis were identified as potentially important mechanisms of a disease.

10.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914267

RESUMO

Gestational hypothyroidism can impair development, cognition, and mood. Here, we tested whether multisensory stimulation (MS) improves the phenotype of rats born to surgically thyroidectomized (Tx) dams suboptimally treated with LT4. 8-week-old female Tx Wistar rats were kept on daily LT4 (0.7 µg/100 g body weight) dosed by gavage (serum TSH and T4 levels indicated moderate hypothyroidism) and 3 weeks later placed for breeding. MS of the litter started at age 60 days and lasted for 8 weeks. It consisted of twice per week of physical, cognitive, sensorial, and food stimuli. The offspring were assessed before and after MS for standardized tests of locomotor activity, cognition, and mood. Gestational hypothyroidism resulted in reduced litter size and increased offspring mortality. The pups exhibited delayed physical development, impairment of short- and long-term memory, and anxiety- and depressive-like behaviors. Nonetheless, ambulatory activity, social memory, and social preference were not affected by gestational hypothyroidism. MS restored short-term memory and anxiety while improving depressive like-behaviors. MS did not improve long-term memory. MS also did not modify the performance of control litter born to intact dams. We conclude that cognition and mood impairments caused by moderate gestational hypothyroidism were reversed or minimized in rats through MS. Further studies should define the molecular mechanisms involved.


Assuntos
Hipotireoidismo , Tiroxina , Animais , Cognição , Feminino , Masculino , Parto , Gravidez , Ratos , Ratos Wistar
11.
Arch Endocrinol Metab ; 65(5): 537-548, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714995

RESUMO

OBJECTIVE: Obesity is characterized by a state of chronic, low-intensity systemic inflammation frequently associated with insulin resistance and dyslipidemia. METHODS: Given that chronic inflammation has been implicated in the pathogenesis of mood disorders, we investigated if chronic obesity that was initiated early in life - lasting through adulthood - could be more harmful to memory impairment and mood fluctuations such as depression. RESULTS: Here we show that pre-pubertal male rats (30 days old) treated with a high-fat diet (40%) for 8-months gained ~50% more weight when compared to controls, exhibited depression and anxiety-like behaviors but no memory impairment. The prefrontal cortex of the obese rats exhibited an increase in the expression of genes related to inflammatory response, such as NFKb, MMP9, CCl2, PPARb, and PPARg. There were no alterations in genes known to be related to depression. CONCLUSION: Long-lasting obesity with onset in prepuberal age led to depression and neuroinflammation but not to memory impairment.


Assuntos
Comportamento Animal , Depressão , Animais , Ansiedade , Depressão/etiologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Obesidade , Ratos
12.
J Endocr Soc ; 4(11): bvaa136, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33123655

RESUMO

To study thyroid hormone (TH) signaling in the human brain, we analyzed published microarray data sets of the temporal pole (Brodmann area 38) of 19 deceased donors. An index of TH signaling built on the expression of 19 well known TH-responsive genes in mouse brains (T3S+) varied from 0.92 to 1.1. After Factor analysis, T3S+ correlated independently with the expression of TH transporters (MCT8, LAT2), TH receptor (TR) beta and TR coregulators (CARM1, MED1, KAT2B, SRC2, SRC3, NCOR2a). Unexpectedly, no correlation was found between T3S+ vs DIO2, DIO3, SRC1, or TRα. An unbiased systematic analysis of the entire transcriptome identified a set of 1649 genes (set #1) with strong positive correlation with T3S+ (r > 0.75). Factor analysis of set #1 identified 2 sets of genes that correlated independently with T3S+, sets #2 (329 genes) and #3 (191 genes). When processed through the Molecular Signatures Data Base (MSigDB), both sets #2 and #3 were enriched with Gene Ontology (GO)-sets related to synaptic transmission and metabolic processes. Ranking individual human brain donors according to their T3S+ led us to identify 1262 genes (set #4) with >1.3-fold higher expression in the top half. The analysis of the overlapped genes between sets #1 and #4 resulted in 769 genes (set #5), which have a very similar MSigDB signature as sets #2 and #3. In conclusion, gene expression in the human temporal pole can be assessed through T3S+ and fluctuates with subtle variations in local TH signaling.

13.
Physiol Behav ; 97(1): 76-86, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19419668

RESUMO

The cytosolic brain-type creatine kinase and mitochondrial ubiquitous creatine kinase (CK-B and UbCKmit) are expressed during the prepubescent and adult period of mammalian life. These creatine kinase (CK) isoforms are present in neural cell types throughout the central and peripheral nervous system and in smooth muscle containing tissues, where they have an important role in cellular energy homeostasis. Here, we report on the coupling of CK activity to body temperature rhythm and adaptive thermoregulation in mice. With both brain-type CK isoforms being absent, the body temperature reproducibly drops ~1.0 degrees C below normal during every morning (inactive) period in the daily cycle. Facultative non-shivering thermogenesis is also impaired, since CK--/-- mice develop severe hypothermia during 24 h cold exposure. A relationship with fat metabolism was suggested because comparison of CK--/-- mice with wildtype controls revealed decreased weight gain associated with less white and brown fat accumulation and smaller brown adipocytes. Also, circulating levels of glucose, triglycerides and leptin are reduced. Extensive physiological testing and uncoupling protein1 analysis showed, however, that the thermogenic problems are not due to abnormal responsiveness of brown adipocytes, since noradrenaline infusion produced a normal increase of body temperature. Moreover, we demonstrate that the cyclic drop in morning temperature is also not related to altered rhythmicity with reduced locomotion, diminished food intake or increased torpor sensitivity. Although several integral functions appear altered when CK is absent in the brain, combined findings point into the direction of inefficient neuronal transmission as the dominant factor in the thermoregulatory defect.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Creatina Quinase Forma BB/fisiologia , Creatina Quinase Mitocondrial/fisiologia , Adipócitos/citologia , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Glicemia , Ritmo Circadiano , Creatina Quinase Forma BB/genética , Creatina Quinase Mitocondrial/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Canais Iônicos/metabolismo , Leptina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Atividade Motora , Norepinefrina/farmacologia , Tamanho do Órgão , Estresse Fisiológico , Proteína Desacopladora 1
14.
Epilepsy Behav ; 15(4): 527-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541544

RESUMO

Epilepsy is the most common neurological disorder in both dogs and humans. Although the pharmacological options for treatment of epilepsies have increased, it has been reported that two-thirds of dogs with epilepsy are refractory to antiepileptic drug therapy. To our knowledge, there are no experimental studies in the literature that show an effect of omega-3 supplementation on epilepsy in dogs. Our case study describes the effectiveness of daily intake of a moderate amount of fish oil in a case of canine epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Suplementos Nutricionais , Doenças do Cão/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/veterinária , Ácidos Graxos Ômega-3/uso terapêutico , Animais , Comportamento Animal , Doenças do Cão/psicologia , Cães , Resistência a Medicamentos , Epilepsia/psicologia , Feminino , Fenobarbital/uso terapêutico
15.
Endocr Rev ; 40(4): 1000-1047, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31033998

RESUMO

Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRß, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.


Assuntos
Transdução de Sinais , Hormônios Tireóideos/metabolismo , Animais , Feminino , Humanos , Iodeto Peroxidase/metabolismo , Masculino , Receptores dos Hormônios Tireóideos/metabolismo
16.
J Clin Invest ; 129(1): 230-245, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30352046

RESUMO

Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here, we report that D2 is a cargo protein in ER Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92-to-Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR). Ala92-D2 accumulated in the trans-Golgi and generated less T3, which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism-carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more, and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.


Assuntos
Encéfalo , Estresse do Retículo Endoplasmático , Hipotireoidismo , Iodeto Peroxidase , Polimorfismo Genético , Resposta a Proteínas não Dobradas , Substituição de Aminoácidos , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Células HEK293 , Humanos , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/enzimologia , Hipotireoidismo/genética , Hipotireoidismo/patologia , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Tiroxina/uso terapêutico , Tri-Iodotironina/uso terapêutico , Iodotironina Desiodinase Tipo II
17.
Thyroid ; 18(2): 197-203, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18279020

RESUMO

Thyroid hormone affects in a myriad of biological processes such as development, growth, and metabolic control. Triiodothyronine (T3) is the biologically active form of thyroid hormone that acts through nuclear receptors, TRalpha and TRbeta, regulating gene expression. Given that the distribution of these receptors is heterogeneous amongst the different tissues, it is not surprising that some physiological effects of T3 are isoform specific. For example, while TRalpha is the dominant receptor in the brain and skeletal system and mediates most of the synergism between T3 and the sympathetic signaling pathway in the heart, TRbeta is abundant in liver and is probably the isoform that mediates most of the T3 effects on lipid metabolism. Thus, it makes sense to develop compounds that selectively act on either one of the TRs, allowing for the activation of specific T3-dependent pathways. This article reviews the recent progress made in this area, focusing on the physiological effects of compounds that lower serum cholesterol and decrease fat mass, as they spare skeletal muscle and bone masses, as well as the heart. The available studies indicate that achieving selective activation of different TR-mediated pathways is a promising strategy for treating lipid disorders and obesity.


Assuntos
Antimetabólitos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Receptores alfa dos Hormônios Tireóideos/agonistas , Receptores beta dos Hormônios Tireóideos/agonistas , Tri-Iodotironina/farmacologia , Animais , Antimetabólitos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Hidantoínas/farmacologia , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/análogos & derivados , Tri-Iodotironina/metabolismo , Tri-Iodotironina/uso terapêutico
18.
Endocrinology ; 159(8): 3090-3104, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905787

RESUMO

Status epilepticus (SE) is an abnormally prolonged seizure that results from either a failure of mechanisms that terminate seizures or from initiating mechanisms that inherently lead to prolonged seizures. Here we report that mice experiencing a 3 hours of SE caused by pilocarpine exhibit a rapid increase in expression of type 2 iodothyronine deiodinase gene (Dio2) and a decrease in the expression of type 3 iodothyronine deiodinase gene in hippocampus, amygdala and prefrontal cortex. Type 3 iodothyronine deiodinase in hippocampal sections was seen concentrated in the neuronal nuclei, typical of ischemic injury of the brain. An unbiased analysis of the hippocampal transcriptome of mice undergoing 3 hours of SE revealed a number of genes, including those involved with response to oxidative stress, cellular homeostasis, cell signaling, and mitochondrial structure. In contrast, in mice with targeted disruption of Dio2 in astrocytes (Astro D2KO mouse), the highly induced genes in the hippocampus were related to inflammation, apoptosis, and cell death. We propose that Dio2 induction caused by SE accelerates production of T3 in different areas of the central nervous system and modifies the hippocampal gene expression profile, affecting the balance between adaptive and maladaptive mechanisms.


Assuntos
Expressão Gênica , Hipocampo/metabolismo , Iodeto Peroxidase/genética , Estado Epiléptico/genética , Tri-Iodotironina/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Apoptose/genética , Astrócitos/metabolismo , Morte Celular/genética , Núcleo Celular/metabolismo , Inflamação/genética , Iodeto Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Agonistas Muscarínicos/toxicidade , Neurônios/metabolismo , Estresse Oxidativo/genética , Pilocarpina/toxicidade , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Estado Epiléptico/induzido quimicamente , Iodotironina Desiodinase Tipo II
19.
Cell Rep ; 22(2): 523-534, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320745

RESUMO

Liver-specific disruption of the type 2 deiodinase gene (Alb-D2KO) results in resistance to both diet-induced obesity and liver steatosis in mice. Here, we report that this is explained by an ∼60% reduction in liver zinc-finger protein-125 (Zfp125) expression. Zfp125 is a Foxo1-inducible transcriptional repressor that causes lipid accumulation in the AML12 mouse hepatic cell line and liver steatosis in mice by reducing liver secretion of triglycerides and hepatocyte efflux of cholesterol. Zfp125 acts by repressing 18 genes involved in lipoprotein structure, lipid binding, and transport. The ApoE promoter contains a functional Zfp125-binding element that is also present in 17 other lipid-related genes repressed by Zfp125. While liver-specific knockdown of Zfp125 causes an "Alb-D2KO-like" metabolic phenotype, liver-specific normalization of Zfp125 expression in Alb-D2KO mice rescues the phenotype, restoring normal susceptibility to diet-induced obesity, liver steatosis, and hypercholesterolemia.


Assuntos
Proteínas de Ligação a DNA/genética , Fígado Gorduroso/genética , Proteína Forkhead Box O1/genética , Hipercolesterolemia/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Fígado Gorduroso/patologia , Proteína Forkhead Box O1/metabolismo , Camundongos
20.
J Endocrinol ; 193(1): 21-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17400799

RESUMO

It is well known that thyroid hormone affects body composition; however, the effect of the thyroid hormone receptor beta (TRbeta)-selective thyromimetic GC-1 on this biological feature had not been demonstrated. In the current study, we compared the effects of a 6-week treatment with triiodothyronine (T3; daily injections of 3 or 6 microg/100 g body weight) or GC-1 (equimolar doses) on different metabolic parameters in adult female rats. Whereas all animals gained weight (17-25 g) in a way not basically affected by T3 or GC-1 treatment, only T3 treatment selectively increased food intake (50-70%). Oxygen consumption was significantly and equally increased (50-70%) by T3 and GC-1. Analysis of body composition by dual-energy X-ray absorptiometry (DEXA) revealed that, whereas control animals gained about 80% of fat mass, T3- or GC-1-treated animals lost 70-90 and approximately 20% respectively. Direct analysis of the carcass showed that T3 treatment promoted a 14-74% decrease in fat content but GC-1 treatment promoted only a 15-23% reduction. The gain in lean mass by DEXA and the carcass protein content were not affected by T3 or GC-1 treatment. However, the mass of individual skeletal muscles was negatively affected by T3 but only barely by GC-1. These findings highlight the potential use of GC-1 for the treatment of obesity and the metabolic syndrome.


Assuntos
Acetatos/uso terapêutico , Obesidade/tratamento farmacológico , Fenóis/uso terapêutico , Receptores beta dos Hormônios Tireóideos/agonistas , Absorciometria de Fóton , Tecido Adiposo/efeitos dos fármacos , Animais , Composição Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Coração/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Obesidade/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores beta dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA