Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6202, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485984

RESUMO

The category of 2D carbon allotropes has gained considerable interest due to its outstanding optoelectronic and mechanical characteristics, which are crucial for various device applications, including energy storage. This study uses density functional theory calculations, ab initio molecular dynamics (AIMD), and classical reactive molecular dynamics (MD) simulations to introduce TODD-Graphene, an innovative 2D planar carbon allotrope with a distinctive porous arrangement comprising 3-8-10-12 carbon rings. TODD-G exhibits intrinsic metallic properties with a low formation energy and stability in thermal and mechanical behavior. Calculations indicate a substantial theoretical capacity for adsorbing Li atoms, revealing a low average diffusion barrier of 0.83 eV. The metallic framework boasts excellent conductivity and positioning TODD-G as an active layer for superior lithium-ion battery efficiency. Charge carrier mobility calculations for electrons and holes in TODD-G surpass those of graphene. Classical reactive MD simulation results affirm its structural integrity, maintaining stability without bond reconstructions at 2200 K.

2.
Sci Rep ; 14(1): 2510, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291070

RESUMO

Computational materials research is vital in improving our understanding of various class of materials and their properties, contributing valuable information that helps predict innovative structures and complement empirical investigations. In this context, DHQ-graphene recently emerged as a stable two-dimensional carbon allotrope composed of decagonal, hexagonal, and quadrilateral carbon rings. Here, we employ density functional theory calculations to investigate the mechanical, electronic, and optical features of its boron nitride counterpart (DHQ-BN). Our findings reveal an insulating band gap of 5.11 eV at the HSE06 level and good structural stability supported by phonon calculations and ab initio molecular dynamics simulations. Moreover, DHQ-BN exhibits strong ultraviolet (UV) activity, suggesting its potential as a highly efficient UV light absorber. Its mechanical properties, including Young's modulus (230 GPa) and Poisson's ratio (0.7), provide insight into its mechanical resilience and structural stability.

3.
Sci Rep ; 14(1): 8519, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609407

RESUMO

The recent expansion of multidrug-resistant (MDR) pathogens poses significant challenges in treating healthcare-associated infections. Although antibacterial resistance occurs by numerous mechanisms, active efflux of the drugs is a critical concern. A single species of efflux pump can produce a simultaneous resistance to several drugs. One of the best-studied efflux pumps is the TtgABC: a tripartite resistance-nodulation-division (RND) efflux pump implicated in the intrinsic antibiotic resistance in Pseudomonas putida DOT-T1E. The expression of the TtgABC gene is down-regulated by the HTH-type transcriptional repressor TtgR. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT) within the Molecular Fragmentation with Conjugate Caps (MFCC) approach, we investigate the coupling profiles of the transcriptional regulator TtgR in complex with quercetin (QUE), a natural polyphenolic flavonoid, tetracycline (TAC), and chloramphenicol (CLM), two broad-spectrum antimicrobial agents. Our quantum biochemical computational results show the: [i] convergence radius, [ii] total binding energy, [iii] relevance (energetically) of the ligands regions, and [iv] most relevant amino acids residues of the TtgR-QUE/TAC/CLM complexes, pointing out distinctions and similarities among them. These findings improve the understanding of the binding mechanism of effectors and facilitate the development of new chemicals targeting TtgR, helping in the battle against the rise of resistance to antimicrobial drugs. These advances are crucial in the ongoing fight against rising antimicrobial drug resistance, providing hope for a future where healthcare-associated infections can be more beneficially treated.


Assuntos
Antifibrinolíticos , Infecção Hospitalar , Humanos , Antibacterianos/farmacologia , Cloranfenicol , Aminoácidos , Transporte Biológico
4.
J Mol Model ; 29(7): 205, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294345

RESUMO

CONTEXT: The monoclinic L-histidine crystal is critical for protein structure and function and is also found in the myelin of brain nerve cells. This study numerically examines its structural, electronic, and optical properties. Our findings indicate that the L-histidine crystal has an insulating band gap of approximately 4.38 eV. Additionally, electron and hole effective masses range between 3.92[Formula: see text]-15.33[Formula: see text] and 4.16[Formula: see text]-7.53[Formula: see text], respectively. Furthermore, our investigation suggests that the L-histidine crystal is an excellent UV collector due to its strong optical absorption activity for photon energies exceeding 3.5 eV. METHODS: To investigate the structural, electronic, and optical properties of L-histidine crystals, we used the Biovia Materials Studio software to conduct Density Functional Theory (DFT) simulations as implemented in the CASTEP code. Our DFT calculations were performed using the generalized gradient approximation (GGA) as parameterized by the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, with an additional dispersion energy correction (PBE [Formula: see text] TS) based on the model proposed by Tkatchenko and Scheffler to describe van der Waals interactions. Additionally, we employed the norm-conserving pseudopotential to treat core electrons.


Assuntos
Eletrônica , Histidina , Teoria da Densidade Funcional , Elétrons , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA