Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 21(2): 349-363, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27641937

RESUMO

This study aimed at characterizing the impact of type 2 diabetes mellitus (T2DM) on the bone marrow mesenchymal stem cell (BMMSC) secretome and angiogenic properties. BMMSCs from Zucker diabetic fatty rats (ZDF) (a T2DM model) and Zucker LEAN littermates (control) were cultured. The supernatant conditioned media (CM) from BMMSCs of diabetic and control rats were collected and analysed. Compared to results obtained using CM from LEAN-BMMSCs, the bioactive content of ZDF-BMMSC CM (i) differently affects endothelial cell (HUVEC) functions in vitro by inducing increased (3.5-fold; P < 0.01) formation of tubule-like structures and migration of these cells (3-fold; P < 0.001), as well as promotes improved vascular formation in vivo, and (ii) contains different levels of angiogenic factors (e.g. IGF1) and mediators, such as OSTP, CATD, FMOD LTBP1 and LTBP2, which are involved in angiogenesis and/or extracellular matrix composition. Addition of neutralizing antibodies against IGF-1, LTBP1 or LTBP2 in the CM of BMMSCs from diabetic rats decreased its stimulatory effect on HUVEC migration by approximately 60%, 40% or 40%, respectively. These results demonstrate that BMMSCs from T2DM rats have a unique secretome with distinct angiogenic properties and provide new insights into the role of BMMSCs in aberrant angiogenesis in the diabetic milieu.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Proteoma/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Proteômica , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo
2.
Stem Cells ; 32(1): 216-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115309

RESUMO

Mesenchymal stem cells (MSC) are known to repair broken heart tissues primarily through a paracrine fashion while emerging evidence indicate that MSC can communicate with cardiomyocytes (CM) through tunneling nanotubes (TNT). Nevertheless, no link has been so far established between these two processes. Here, we addressed whether cell-to-cell communication processes between MSC and suffering cardiomyocytes and more particularly those involving TNT control the MSC paracrine regenerative function. In the attempt to mimic in vitro an injured heart microenvironment, we developed a species mismatch coculture system consisting of terminally differentiated CM from mouse in a distressed state and human multipotent adipose derived stem cells (hMADS). In this setting, we found that crosstalk between hMADS and CM through TNT altered the secretion by hMADS of cardioprotective soluble factors such as VEGF, HGF, SDF-1α, and MCP-3 and thereby maximized the capacity of stem cells to promote angiogenesis and chemotaxis of bone marrow multipotent cells. Additionally, engraftment experiments into mouse infarcted hearts revealed that in vitro preconditioning of hMADS with cardiomyocytes increased the cell therapy efficacy of naïve stem cells. In particular, in comparison with hearts treated with stem cells alone, those treated with cocultured ones exhibited greater cardiac function recovery associated with higher angiogenesis and homing of bone marrow progenitor cells at the infarction site. In conclusion, our findings established the first relationship between the paracrine regenerative action of MSC and the nanotubular crosstalk with CM and emphasize that ex vivo manipulation of these communication processes might be of interest for optimizing current cardiac cell therapies.


Assuntos
Compartimento Celular/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Nanotubos , Animais , Técnicas de Cocultura , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Comunicação Parácrina
3.
Life (Basel) ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629326

RESUMO

The lack of curative options for pulmonary arterial hypertension drives important research to understand the mechanisms underlying this devastating disease. Among the main identified pathways, the platelet-derived growth factor (PDGF) pathway was established to control vascular remodeling and anti-PDGF receptor (PDGFR) drugs were shown to reverse the disease in experimental models. Four different isoforms of PDGF are produced by various cell types in the lung. PDGFs control vascular cells migration, proliferation and survival through binding to their receptors PDGFRα and ß. They elicit multiple intracellular signaling pathways which have been particularly studied in pulmonary smooth muscle cells. Activation of the PDGF pathway has been demonstrated both in patients and in pulmonary hypertension (PH) experimental models. Tyrosine kinase inhibitors (TKI) are numerous but without real specificity and Imatinib, one of the most specific, resulted in beneficial effects. However, adverse events and treatment discontinuation discouraged to pursue this therapy. Novel therapeutic strategies are currently under experimental evaluation. For TKI, they include intratracheal drug administration, low dosage or nanoparticles delivery. Specific anti-PDGF and anti-PDGFR molecules can also be designed such as new TKI, soluble receptors, aptamers or oligonucleotides.

4.
Cells ; 10(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572905

RESUMO

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Assuntos
Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Células-Tronco Mesenquimais/patologia , Animais , Diferenciação Celular , Proliferação de Células , Leucócitos Mononucleares/patologia , Masculino , Camundongos Nus , Neovascularização Fisiológica , Osteogênese , Ratos Zucker , Magreza/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA