Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ther ; 29(3): 1186-1198, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278563

RESUMO

Historically poor clinical results of tumor vaccines have been attributed to weakly immunogenic antigen targets, limited specificity, and vaccine platforms that fail to induce high-quality polyfunctional T cells, central to mediating cellular immunity. We show here that the combination of antigen selection, construct design, and a robust vaccine platform based on the Synthetically Modified Alpha Replicon RNA Technology (SMARRT), a self-replicating RNA, leads to control of tumor growth in mice. Therapeutic immunization with SMARRT replicon-based vaccines expressing tumor-specific neoantigens or tumor-associated antigen were able to generate polyfunctional CD4+ and CD8+ T cell responses in mice. Additionally, checkpoint inhibitors, or co-administration of cytokine also expressed from the SMARRT platform, synergized to enhance responses further. Lastly, SMARRT-based immunization of non-human primates was able to elicit high-quality T cell responses, demonstrating translatability and clinical feasibility of synthetic replicon technology for therapeutic oncology vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Neoplasias do Colo/terapia , Imunidade Celular/imunologia , Replicon , Animais , Vacinas Anticâncer/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Primatas , Células Tumorais Cultivadas , Vacinação
2.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331958

RESUMO

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Febre Q/imunologia , Idoso , Antibacterianos/uso terapêutico , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Doença Crônica , Convalescença , Coxiella burnetii/patogenicidade , ELISPOT , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Teste de Histocompatibilidade , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/imunologia , Febre Q/tratamento farmacológico , Febre Q/genética , Febre Q/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/microbiologia
3.
Expert Rev Vaccines ; 23(1): 205-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189107

RESUMO

INTRODUCTION: Clinical trials of personalized cancer vaccines have shown that on-demand therapies that are manufactured for each patient, result in activated T cell responses against individual tumor neoantigens. However, their use has been traditionally restricted to adjuvant settings and late-stage cancer therapy. There is growing support for the implementation of PCV earlier in the cancer therapy timeline, for reasons that will be discussed in this review. AREAS COVERED: The efficacy of cancer vaccines may be to some extent dependent on treatment(s) given prior to vaccine administration. Tumors can undergo radical immunoediting following treatment with immunotherapies, such as checkpoint inhibitors, which may affect the presence of the very mutations targeted by cancer vaccines. This review will cover the topics of neoantigen cancer vaccines, tumor immunoediting, and therapy timing. EXPERT OPINION: Therapy timing remains a critical topic to address in optimizing the efficacy of personalized cancer vaccines. Most personalized cancer vaccines are being evaluated in late-stage cancer patients and after treatment with checkpoint inhibitors, but they may offer a greater benefit to the patient if administered in earlier clinical settings, such as the neoadjuvant setting, where patients are not facing T cell exhaustion and/or a further compromised immune system.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Terapia Neoadjuvante , Imunoterapia , Adjuvantes Imunológicos , Neoplasias/terapia
4.
Environ Microbiol ; 15(8): 2147-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23826978

RESUMO

With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains.


Assuntos
Bases de Dados Genéticas/normas , Bases de Dados Genéticas/tendências , Eucariotos/genética , Genômica , Clorófitas/genética , Código de Barras de DNA Taxonômico , Diatomáceas/genética , Variação Genética , Genoma de Planta/genética
5.
Expert Rev Vaccines ; 21(2): 173-184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882038

RESUMO

INTRODUCTION: The field of cancer therapy has undergone a major transformation in less than a decade due to the introduction of checkpoint inhibitors, the advent of next generation sequencing and the discovery of neoantigens. The key observation that the breadth of each patient's immune response to the unique mutations or neoantigens present in their tumor is directly related to their survival has led oncologists to focus on driving immune responses to neoantigens through vaccination. Oncology has entered the era of precision immunotherapy, and cancer vaccine development is undergoing a paradigm shift. AREAS COVERED: Neoantigens are short peptide sequences found in tumors, but not noncancerous tissues, the vast majority of which are unique to each patient. In addition to providing a description of the distinguishing features of neoantigen discovery platforms, this review will address cross-cutting personalized cancer vaccine design themes and developmental stumbling blocks. EXPERT OPINION: Immunoinformatic pipelines that can rapidly scan cancer genomes and identify 'the best' neoantigens are in high demand. Despite the need for such tools, immunoinformatic methods for identifying neoepitopes in cancer genomes are diverse and have not been well-validated. Validation of 'personalized vaccine design pipelines' will bring about a revolution in neoantigen-based vaccine design and delivery.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Medicina de Precisão/métodos
6.
Front Immunol ; 13: 901372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651616

RESUMO

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Epitopos de Linfócito T , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Febre Q/prevenção & controle , Linfócitos T
7.
Sci Rep ; 11(1): 9983, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976291

RESUMO

Improvement of risk stratification through prognostic biomarkers may enhance the personalization of cancer patient monitoring and treatment. We used Ancer, an immunoinformatic CD8, CD4, and regulatory T cell neoepitope screening system, to perform an advanced neoantigen analysis of genomic data derived from the urothelial cancer cohort of The Cancer Genome Atlas. Ancer demonstrated improved prognostic stratification and five-year survival prediction compared to standard analyses using tumor mutational burden or neoepitope identification using NetMHCpan and NetMHCIIpan. The superiority of Ancer, shown in both univariate and multivariate survival analyses, is attributed to the removal of neoepitopes that do not contribute to tumor immunogenicity based on their homology with self-epitopes. This analysis suggests that the presence of a higher number of unique, non-self CD8- and CD4-neoepitopes contributes to cancer survival, and that prospectively defining these neoepitopes using Ancer is a novel prognostic or predictive biomarker.


Assuntos
Epitopos de Linfócito T , Antígenos HLA , Receptores de Antígenos de Linfócitos T , Neoplasias da Bexiga Urinária/imunologia , Estudos de Coortes , Humanos , Neoplasias da Bexiga Urinária/mortalidade
8.
Hum Vaccin Immunother ; 16(2): 277-285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31951773

RESUMO

The resurgence of whooping cough since the introduction of acellular (protein) vaccines has led to a renewed interest in the development of improved pertussis vaccines; Outer Membrane Vesicles (OMVs) carrying pertussis antigens have emerged as viable candidates. An in silico immunogenicity screen was carried out on 49 well-known Bordetella pertussis proteins in order to better understand their potential role toward the efficacy of pertussis OMVs for vaccine design; seven proteins were identified as being good candidates for including in optimized cellular and acellular pertussis vaccines. We then screened these antigens for putative tolerance-inducing sequences, as proteins with reduced tolerogenicity have improved vaccine potency in preclinical models. We used specialized homology tools (JanusMatrix) to identify peptides in the proteins that were cross-reactive with human sequences. Four of the 19 identified cross-reactive peptides were detolerized in silico using a separate tool, OptiMatrix, which disrupted the potential of these peptides to bind to human HLA and murine MHC. Four selected cross-reactive peptides and their detolerized variants were synthesized and their binding to a set of eight common HLA class II alleles was assessed in vitro. Reduced binding affinity to HLA class II was observed for the detolerized variants compared to the wild-type peptides, highlighting the potential of this approach for designing more efficacious pertussis vaccines.


Assuntos
Coqueluche , Animais , Bordetella pertussis , Simulação por Computador , Epitopos de Linfócito T , Humanos , Camundongos , Vacina contra Coqueluche , Coqueluche/prevenção & controle
9.
Front Immunol ; 11: 442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318055

RESUMO

Computational vaccinology includes epitope mapping, antigen selection, and immunogen design using computational tools. Tools that facilitate the in silico prediction of immune response to biothreats, emerging infectious diseases, and cancers can accelerate the design of novel and next generation vaccines and their delivery to the clinic. Over the past 20 years, vaccinologists, bioinformatics experts, and advanced programmers based in Providence, Rhode Island, USA have advanced the development of an integrated toolkit for vaccine design called iVAX, that is secure and user-accessible by internet. This integrated set of immunoinformatic tools comprises algorithms for scoring and triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, re-engineering or eliminating regulatory T cell epitopes, and re-designing antigens to induce immunogenicity and protection against disease for humans and livestock. Commercial and academic applications of iVAX have included identifying immunogenic T cell epitopes in the development of a T-cell based human multi-epitope Q fever vaccine, designing novel influenza vaccines, identifying cross-conserved T cell epitopes for a malaria vaccine, and analyzing immune responses in clinical vaccine studies. Animal vaccine applications to date have included viral infections of pigs such as swine influenza A, PCV2, and African Swine Fever. "Rapid-Fire" applications for biodefense have included a demonstration project for Lassa Fever and Q fever. As recent infectious disease outbreaks underscore the significance of vaccine-driven preparedness, the integrated set of tools available on the iVAX toolkit stand ready to help vaccine developers deliver genome-derived, epitope-driven vaccines.


Assuntos
Epitopos de Linfócito T/genética , Medicina de Precisão/métodos , Linfócitos T Reguladores/imunologia , Vacinas/imunologia , Viroses/imunologia , Animais , Bioengenharia , Bioterrorismo , Modelos Animais de Doenças , Humanos , Vacinação em Massa , Informática Médica , Vacinas/genética
10.
Sci Rep ; 9(1): 16103, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695065

RESUMO

Type 1 Diabetes (T1D) is an autoimmune disease that is associated with effector T cell (Teff) destruction of insulin-producing pancreatic beta-islet cells. Among the therapies being evaluated for T1D is the restoration of regulatory T cell (Treg) activity, specifically directed toward down-modulation of beta-islet antigen-specific T effector cells. This is also known as antigen-specific adaptive tolerance induction for T1D (T1D ASATI). Tregitopes (T regulatory cell epitopes) are natural T cell epitopes derived from immunoglobulin G (IgG) that were identified in 2008 and have been evaluated in several autoimmune disease models. In the T1D ASATI studies presented here, Tregitope peptides were administered to non-obese diabetic (NOD) mice at the onset of diabetes within two clinically-relevant delivery systems (liposomes and in human serum albumin [HSA]-fusion products) in combination with preproinsulin (PPI) target antigen peptides. The combination of Tregitope-albumin fusions and PPI peptides reduced the incidence of severe diabetes and reversed mild diabetes, over 49 days of treatment and observation. Combining HSA-Tregitope fusions with PPI peptides is a promising ASATI approach for therapy of T1D.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Epitopos de Linfócito T/administração & dosagem , Tolerância Imunológica , Insulina/administração & dosagem , Peptídeos/administração & dosagem , Precursores de Proteínas/administração & dosagem , Albumina Sérica Humana/administração & dosagem , Animais , Diabetes Mellitus Tipo 1/imunologia , Epitopos de Linfócito T/genética , Feminino , Humanos , Insulina/genética , Camundongos Endogâmicos NOD , Peptídeos/genética , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Albumina Sérica Humana/genética , Linfócitos T Reguladores/imunologia
11.
Front Immunol ; 10: 207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828331

RESUMO

Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007-2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10-28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Memória Imunológica , Febre Q/imunologia , Animais , Vacinas Bacterianas/imunologia , Biomarcadores , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , ELISPOT , Cobaias , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Humanos , Imunização , Imunogenicidade da Vacina , Interferon gama/biossíntese , Febre Q/metabolismo , Febre Q/prevenção & controle
12.
Front Oncol ; 9: 720, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428586

RESUMO

Malignant Mesothelioma (MM) is a rare and highly aggressive cancer that develops from mesothelial cells lining the pleura and other internal cavities, and is often associated with asbestos exposure. To date, no effective treatments have been made available for this pathology. Herein, we propose a novel immunotherapeutic approach based on a unique vaccine targeting a series of antigens that we found expressed in different MM tumors, but largely undetectable in normal tissues. This vaccine, that we term p-Tvax, is comprised of a series of immunogenic peptides presented by both MHC-I and -II to generate robust immune responses. The peptides were designed using in silico algorithms that discriminate between highly immunogenic T cell epitopes and other harmful epitopes, such as suppressive regulatory T cell epitopes and autoimmune epitopes. Vaccination of mice with p-Tvax led to antigen-specific immune responses that involved both CD8+ and CD4+ T cells, which exhibited cytolytic activity against MM cells in vitro. In mice carrying MM tumors, p-Tvax increased tumor infiltration of CD4+ T cells. Moreover, combining p-Tvax with an OX40 agonist led to decreased tumor growth and increased survival. Mice treated with this combination immunotherapy displayed higher numbers of tumor-infiltrating CD8+ and CD4+ T cells and reduced T regulatory cells in tumors. Collectively, these data suggest that the combination of p-Tvax with an OX40 agonist could be an effective strategy for MM treatment.

13.
PLoS One ; 8(7): e70320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922979

RESUMO

Obesity is a chronic inflammatory disease that weakens macrophage innate immune response to infections. Since M1 polarization is crucial during acute infectious diseases, we hypothesized that diet-induced obesity inhibits M1 polarization of macrophages in the response to bacterial infections. Bone marrow macrophages (BMMΦ) from lean and obese mice were exposed to live Porphyromonas gingivalis (P. gingivalis) for three incubation times (1 h, 4 h and 24 h). Flow cytometry analysis revealed that the M1 polarization was inhibited after P. gingivalis exposure in BMMΦ from obese mice when compared with BMMΦ from lean counterparts. Using a computational approach in conjunction with microarray data, we identified switching genes that may differentially control the behavior of response pathways in macrophages from lean and obese mice. The two most prominent switching genes were thrombospondin 1 and arginase 1. Protein expression levels of both genes were higher in obese BMMΦ than in lean BMMΦ after exposure to P. gingivalis. Inhibition of either thrombospondin 1 or arginase 1 by specific inhibitors recovered the M1 polarization of BMMΦ from obese mice after P. gingivalis exposure. These data indicate that thrombospondin 1 and arginase 1 are important bacterial response genes, whose regulation is altered in macrophages from obese mice.


Assuntos
Infecções por Bacteroidaceae/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Porphyromonas gingivalis/imunologia , Animais , Arginase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Perfilação da Expressão Gênica , Imunofenotipagem , Macrófagos/metabolismo , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo , Reprodutibilidade dos Testes , Transdução de Sinais , Trombospondina 1/metabolismo
14.
PLoS One ; 7(2): e31341, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363624

RESUMO

The Toll-Like Receptors (TLRs) are proteins involved in the immune system that increase cytokine levels when triggered. While cytokines coordinate the response to infection, they appear to be detrimental to the host when reaching too high levels. Several studies have shown that the deletion of specific TLRs was beneficial for the host, as cytokine levels were decreased consequently. It is not clear, however, how targeting other components of the TLR pathways can improve the responses to infections. We applied the concept of Minimal Cut Sets (MCS) to the ihsTLR v1.0 model of the TLR pathways to determine sets of reactions whose knockouts disrupt these pathways. We decomposed the TLR network into 34 modules and determined signatures for each MCS, i.e. the list of targeted modules. We uncovered 2,669 MCS organized in 68 signatures. Very few MCS targeted directly the TLRs, indicating that they may not be efficient targets for controlling these pathways. We mapped the species of the TLR network to genes in human and mouse, and determined more than 10,000 Essential Gene Sets (EGS). Each EGS provides genes whose deletion suppresses the network's outputs.


Assuntos
Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Genes Essenciais/genética , Humanos , Camundongos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA