Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.797
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7975): 737-745, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612393

RESUMO

The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.


Assuntos
Desenvolvimento de Medicamentos , Genética Humana , Terapia de Alvo Molecular , Humanos , Aprovação de Drogas/estatística & dados numéricos , Desenvolvimento de Medicamentos/estatística & dados numéricos , Terapias em Estudo/estatística & dados numéricos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/estatística & dados numéricos , Doenças Raras/genética , Doenças Raras/terapia , Mutação em Linhagem Germinativa , Fatores de Tempo
2.
Physiol Genomics ; 56(7): 483-491, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738317

RESUMO

Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.NEW & NOTEWORTHY We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.


Assuntos
COVID-19 , Desidratação , Metaboloma , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Desidratação/metabolismo , COVID-19/metabolismo , COVID-19/complicações , Idoso , Metabolômica/métodos , Respiração Artificial , Injúria Renal Aguda/metabolismo , Adulto , SARS-CoV-2 , Estudos de Coortes , Aminoácidos/metabolismo , Aminoácidos/sangue , Ureia/metabolismo , Ureia/sangue , Concentração Osmolar
3.
Nat Rev Genet ; 19(2): 110-124, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29225335

RESUMO

Genetic architecture describes the characteristics of genetic variation that are responsible for heritable phenotypic variability. It depends on the number of genetic variants affecting a trait, their frequencies in the population, the magnitude of their effects and their interactions with each other and the environment. Defining the genetic architecture of a complex trait or disease is central to the scientific and clinical goals of human genetics, which are to understand disease aetiology and aid in disease screening, diagnosis, prognosis and therapy. Recent technological advances have enabled genome-wide association studies and emerging next-generation sequencing studies to begin to decipher the nature of the heritable contribution to traits and disease. Here, we describe the types of genetic architecture that have been observed, how architecture can be measured and why an improved understanding of genetic architecture is central to future advances in the field.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Estudo de Associação Genômica Ampla , Humanos
4.
Hum Genet ; 142(6): 749-758, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37009933

RESUMO

GWAS has identified thousands of loci associated with disease, yet the causal genes within these loci remain largely unknown. Identifying these causal genes would enable deeper understanding of the disease and assist in genetics-based drug development. Exome-wide association studies (ExWAS) are more expensive but can pinpoint causal genes offering high-yield drug targets, yet suffer from a high false-negative rate. Several algorithms have been developed to prioritize genes at GWAS loci, such as the Effector Index (Ei), Locus-2-Gene (L2G), Polygenic Prioritization score (PoPs), and Activity-by-Contact score (ABC) and it is not known if these algorithms can predict ExWAS findings from GWAS data. However, if this were the case, thousands of associated GWAS loci could potentially be resolved to causal genes. Here, we quantified the performance of these algorithms by evaluating their ability to identify ExWAS significant genes for nine traits. We found that Ei, L2G, and PoPs can identify ExWAS significant genes with high areas under the precision recall curve (Ei: 0.52, L2G: 0.37, PoPs: 0.18, ABC: 0.14). Furthermore, we found that for every unit increase in the normalized scores, there was an associated 1.3-4.6-fold increase in the odds of a gene reaching exome-wide significance (Ei: 4.6, L2G: 2.5, PoPs: 2.1, ABC: 1.3). Overall, we found that Ei, L2G, and PoPs can anticipate ExWAS findings from widely available GWAS results. These techniques are therefore promising when well-powered ExWAS data are not readily available and can be used to anticipate ExWAS findings, allowing for prioritization of genes at GWAS loci.


Assuntos
Exoma , Locos de Características Quantitativas , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Algoritmos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
5.
Hum Genet ; 142(10): 1461-1476, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640912

RESUMO

Identifying causal genes at GWAS loci can help pinpoint targets for therapeutic interventions. Expression studies can disentangle such loci but signals from expression quantitative trait loci (eQTLs) often fail to colocalize-which means that the genetic control of measured expression is not shared with the genetic control of disease risk. This may be because gene expression is measured in the wrong cell type, physiological state, or organ. We tested whether Mendelian randomization (MR) could identify genes at loci influencing COVID-19 outcomes and whether the colocalization of genetic control of expression and COVID-19 outcomes was influenced by cell type, cell stimulation, and organ. We conducted MR of cis-eQTLs from single cell (scRNA-seq) and bulk RNA sequencing. We then tested variables that could influence colocalization, including cell type, cell stimulation, RNA sequencing modality, organ, symptoms of COVID-19, and SARS-CoV-2 status among individuals with symptoms of COVID-19. The outcomes used to test colocalization were COVID-19 severity and susceptibility as assessed in the Host Genetics Initiative release 7. Most transcripts identified using MR did not colocalize when tested across cell types, cell state and in different organs. Most that did colocalize likely represented false positives due to linkage disequilibrium. In general, colocalization was highly variable and at times inconsistent for the same transcript across cell type, cell stimulation and organ. While we identified factors that influenced colocalization for select transcripts, identifying 33 that mediate COVID-19 outcomes, our study suggests that colocalization of expression with COVID-19 outcomes is partially due to noisy signals even after following quality control and sensitivity testing. These findings illustrate the present difficulty of linking expression transcripts to disease outcomes and the need for skepticism when observing eQTL MR results, even accounting for cell types, stimulation state and different organs.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Desequilíbrio de Ligação , Controle de Qualidade , Locos de Características Quantitativas
6.
Am J Hum Genet ; 106(3): 327-337, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059762

RESUMO

We aimed to increase our understanding of the genetic determinants of vitamin D levels by undertaking a large-scale genome-wide association study (GWAS) of serum 25 hydroxyvitamin D (25OHD). To do so, we used imputed genotypes from 401,460 white British UK Biobank participants with available 25OHD levels, retaining single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) > 0.1% and imputation quality score > 0.3. We performed a linear mixed model GWAS on standardized log-transformed 25OHD, adjusting for age, sex, season of measurement, and vitamin D supplementation. These results were combined with those from a previous GWAS including 42,274 Europeans. In silico functional follow-up of the GWAS results was undertaken to identify enrichment in gene sets, pathways, and expression in tissues, and to investigate the partitioned heritability of 25OHD and its shared heritability with other traits. Using this approach, the SNP heritability of 25OHD was estimated to 16.1%. 138 conditionally independent SNPs were detected (p value < 6.6 × 10-9) among which 53 had MAF < 5%. Single variant association signals mapped to 69 distinct loci, among which 63 were previously unreported. We identified enrichment in hepatic and lipid metabolism gene pathways and enriched expression of the 25OHD genes in liver, skin, and gastrointestinal tissues. We observed partially shared heritability between 25OHD and socio-economic traits, a feature which may be mediated through time spent outdoors. Therefore, through a large 25OHD GWAS, we identified 63 loci that underline the contribution of genes outside the vitamin D canonical metabolic pathway to the genetic architecture of 25OHD.


Assuntos
Estudo de Associação Genômica Ampla , Vitamina D/análogos & derivados , Feminino , Interação Gene-Ambiente , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Vitamina D/sangue
7.
PLoS Biol ; 18(11): e3000973, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253141

RESUMO

The causes of multiple sclerosis (MS) remain unknown. Smoking has been associated with MS in observational studies and is often thought of as an environmental risk factor. We used two-sample Mendelian randomization (MR) to examine whether this association is causal using genetic variants identified in genome-wide association studies (GWASs) as associated with smoking. We assessed both smoking initiation and lifetime smoking behaviour (which captures smoking duration, heaviness, and cessation). There was very limited evidence for a meaningful effect of smoking on MS susceptibility as measured using summary statistics from the International Multiple Sclerosis Genetics Consortium (IMSGC) meta-analysis, including 14,802 cases and 26,703 controls. There was no clear evidence for an effect of smoking on the risk of developing MS (smoking initiation: odds ratio [OR] 1.03, 95% confidence interval [CI] 0.92-1.61; lifetime smoking: OR 1.10, 95% CI 0.87-1.40). These findings suggest that smoking does not have a detrimental consequence on MS susceptibility. Further work is needed to determine the causal effect of smoking on MS progression.


Assuntos
Fumar Cigarros/efeitos adversos , Esclerose Múltipla/etiologia , Esclerose Múltipla/genética , Suscetibilidade a Doenças , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco
8.
Am J Respir Crit Care Med ; 206(10): 1259-1270, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816432

RESUMO

Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , DNA , Metilação de DNA/genética , Expressão Gênica , Predisposição Genética para Doença/genética , Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Locos de Características Quantitativas/genética , RNA
9.
Spinal Cord ; 61(10): 536-540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491608

RESUMO

STUDY DESIGN: Expert opinion, feedback, revisions, and final consensus. OBJECTIVES: To update the International Spinal Cord Injury Pain Basic Data Set (ISCIPBDS version 2.0) and incorporate suggestions from the SCI pain clinical and research community with respect to overall utility. SETTING: International. METHODS: The ISCIPBDS working group evaluated these suggestions and made modifications. The revised ISCIPBDS (Version 3.0) was then reviewed by members of the International SCI Data Sets Committee, the American Spinal Injury Association (ASIA) Board, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, individual reviewers and societies, and posted on the ASIA and ISCoS websites for 1 month to elicit comments before final approval by ASIA and ISCoS. RESULTS: The ISCIPBDS (Version 3.0) was updated to make the dataset more flexible and useful: 1. The assessment can be based on the patient's perception of several of his/her "worst" pain(s) or based on the International SCI Pain (ISCIP) Classification-defined or other pain types, depending on the specific research questions or clinical needs. 2. Pain interference should usually be rated for overall pain but may also be used for specific pain problems if needed. 3. An optional pain drawing was added to complement the check box documentation of pain location. 4. Data categories consistent with the Extended Pain Dataset list of current treatments were added. 5. Several new training cases were added.


Assuntos
Traumatismos da Medula Espinal , Humanos , Masculino , Feminino , Estados Unidos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/terapia , Dor/diagnóstico , Dor/etiologia , Bases de Dados Factuais
10.
Genet Epidemiol ; 45(8): 874-890, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34468045

RESUMO

Medical research increasingly includes high-dimensional regression modeling with a need for error-in-variables methods. The Convex Conditioned Lasso (CoCoLasso) utilizes a reformulated Lasso objective function and an error-corrected cross-validation to enable error-in-variables regression, but requires heavy computations. Here, we develop a Block coordinate Descent Convex Conditioned Lasso (BDCoCoLasso) algorithm for modeling high-dimensional data that are only partially corrupted by measurement error. This algorithm separately optimizes the estimation of the uncorrupted and corrupted features in an iterative manner to reduce computational cost, with a specially calibrated formulation of cross-validation error. Through simulations, we show that the BDCoCoLasso algorithm successfully copes with much larger feature sets than CoCoLasso, and as expected, outperforms the naïve Lasso with enhanced estimation accuracy and consistency, as the intensity and complexity of measurement errors increase. Also, a new smoothly clipped absolute deviation penalization option is added that may be appropriate for some data sets. We apply the BDCoCoLasso algorithm to data selected from the UK Biobank. We develop and showcase the utility of covariate-adjusted genetic risk scores for body mass index, bone mineral density, and lifespan. We demonstrate that by leveraging more information than the naïve Lasso in partially corrupted data, the BDCoCoLasso may achieve higher prediction accuracy. These innovations, together with an R package, BDCoCoLasso, make error-in-variables adjustments more accessible for high-dimensional data sets. We posit the BDCoCoLasso algorithm has the potential to be widely applied in various fields, including genomics-facilitated personalized medicine research.


Assuntos
Algoritmos , Modelos Genéticos , Humanos , Projetos de Pesquisa
11.
Hum Genet ; 141(8): 1431-1447, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35147782

RESUMO

Drug development and biological discovery require effective strategies to map existing genetic associations to causal genes. To approach this problem, we selected 12 common diseases and quantitative traits for which highly powered genome-wide association studies (GWAS) were available. For each disease or trait, we systematically curated positive control gene sets from Mendelian forms of the disease and from targets of medicines used for disease treatment. We found that these positive control genes were highly enriched in proximity of GWAS-associated single-nucleotide variants (SNVs). We then performed quantitative assessment of the contribution of commonly used genomic features, including open chromatin maps, expression quantitative trait loci (eQTL), and chromatin conformation data. Using these features, we trained and validated an Effector Index (Ei), to map target genes for these 12 common diseases and traits. Ei demonstrated high predictive performance, both with cross-validation on the training set, and an independently derived set for type 2 diabetes. Key predictive features included coding or transcript-altering SNVs, distance to gene, and open chromatin-based metrics. This work outlines a simple, understandable approach to prioritize genes at GWAS loci for functional follow-up and drug development, and provides a systematic strategy for prioritization of GWAS target genes.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Cromatina/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
12.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34172473

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal fibrotic interstitial lung disease. Few circulating biomarkers have been identified to have causal effects on IPF. METHODS: To identify candidate IPF-influencing circulating proteins, we undertook an efficient screen of circulating proteins by applying a two-sample Mendelian randomisation (MR) approach with existing publicly available data. For instruments, we used genetic determinants of circulating proteins which reside cis to the encoded gene (cis-single nucleotide polymorphisms (SNPs)), identified by two genome-wide association studies (GWASs) in European individuals (3301 and 3200 subjects). We then applied MR methods to test if the levels of these circulating proteins influenced IPF susceptibility in the largest IPF GWAS (2668 cases and 8591 controls). We validated the MR results using colocalisation analyses to ensure that both the circulating proteins and IPF shared a common genetic signal. RESULTS: MR analyses of 834 proteins found that a 1 sd increase in circulating galactoside 3(4)-l-fucosyltransferase (FUT3) and α-(1,3)-fucosyltransferase 5 (FUT5) was associated with a reduced risk of IPF (OR 0.81, 95% CI 0.74-0.88; p=6.3×10-7 and OR 0.76, 95% CI 0.68-0.86; p=1.1×10-5, respectively). Sensitivity analyses including multiple cis-SNPs provided similar estimates both for FUT3 (inverse variance weighted (IVW) OR 0.84, 95% CI 0.78-0.91; p=9.8×10-6 and MR-Egger OR 0.69, 95% CI 0.50-0.97; p=0.03) and FUT5 (IVW OR 0.84, 95% CI 0.77-0.92; p=1.4×10-4 and MR-Egger OR 0.59, 95% CI 0.38-0.90; p=0.01). FUT3 and FUT5 signals colocalised with IPF signals, with posterior probabilities of a shared genetic signal of 99.9% and 97.7%, respectively. Further transcriptomic investigations supported the protective effects of FUT3 for IPF. CONCLUSIONS: An efficient MR scan of 834 circulating proteins provided evidence that genetically increased circulating FUT3 level is associated with reduced risk of IPF.


Assuntos
Fucosiltransferases , Fibrose Pulmonar Idiopática , Fucosiltransferases/genética , Estudo de Associação Genômica Ampla , Humanos , Fibrose Pulmonar Idiopática/genética , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único
13.
Blood ; 136(5): 533-541, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32457982

RESUMO

Deep vein thrombosis and pulmonary embolism, collectively defined as venous thromboembolism (VTE), are the third leading cause of cardiovascular death in the United States. Common genetic variants conferring increased varying degrees of VTE risk have been identified by genome-wide association studies (GWAS). Rare mutations in the anticoagulant genes PROC, PROS1 and SERPINC1 result in perinatal lethal thrombosis in homozygotes and markedly increased VTE risk in heterozygotes. However, currently described VTE variants account for an insufficient portion of risk to be routinely used for clinical decision making. To identify new rare VTE risk variants, we performed a whole-exome study of 393 individuals with unprovoked VTE and 6114 controls. This study identified 4 genes harboring an excess number of rare damaging variants in patients with VTE: PROS1, STAB2, PROC, and SERPINC1. At STAB2, 7.8% of VTE cases and 2.4% of controls had a qualifying rare variant. In cell culture, VTE-associated variants of STAB2 had a reduced surface expression compared with reference STAB2. Common variants in STAB2 have been previously associated with plasma von Willebrand factor and coagulation factor VIII levels in GWAS, suggesting that haploinsufficiency of stabilin-2 may increase VTE risk through elevated levels of these procoagulants. In an independent cohort, we found higher von Willebrand factor levels and equivalent propeptide levels in individuals with rare STAB2 variants compared with controls. Taken together, this study demonstrates the utility of gene-based collapsing analyses to identify loci harboring an excess of rare variants with functional connections to a complex thrombotic disease.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Predisposição Genética para Doença/genética , Tromboembolia Venosa/genética , Adulto , Feminino , Genótipo , Humanos , Masculino , Mutação , Tromboembolia Venosa/sangue , Sequenciamento do Exoma/métodos , Fator de von Willebrand/metabolismo
14.
Crit Care ; 26(1): 322, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271419

RESUMO

BACKGROUND: We have previously shown that iatrogenic dehydration is associated with a shift to organic osmolyte production in the general ICU population. The aim of the present investigation was to determine the validity of the physiological response to dehydration known as aestivation and its relevance for long-term disease outcome in COVID-19. METHODS: The study includes 374 COVID-19 patients from the Pronmed cohort admitted to the ICU at Uppsala University Hospital. Dehydration data was available for 165 of these patients and used for the primary analysis. Validation was performed in Biobanque Québécoise de la COVID-19 (BQC19) using 1052 patients with dehydration data. Dehydration was assessed through estimated osmolality (eOSM = 2Na + 2 K + glucose + urea), and correlated to important endpoints including death, invasive mechanical ventilation, acute kidney injury, and long COVID-19 symptom score grouped by physical or mental. RESULTS: Increasing eOSM was correlated with increasing role of organic osmolytes for eOSM, while the proportion of sodium and potassium of eOSM were inversely correlated to eOSM. Acute outcomes were associated with pronounced dehydration, and physical long-COVID was more strongly associated with dehydration than mental long-COVID after adjustment for age, sex, and disease severity. Metabolomic analysis showed enrichment of amino acids among metabolites that showed an aestivating pattern. CONCLUSIONS: Dehydration during acute COVID-19 infection causes an aestivation response that is associated with protein degradation and physical long-COVID. TRIAL REGISTRATION: The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Desidratação/etiologia , Sódio , Ureia , Potássio , Aminoácidos , Glucose , Síndrome de COVID-19 Pós-Aguda
15.
Ultrasound Obstet Gynecol ; 59(3): 377-384, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34405924

RESUMO

OBJECTIVE: The use of twin-specific vs singleton growth charts in the assessment of twin pregnancy has been controversial. The aim of this study was to assess whether a diagnosis of small-for-gestational age (SGA) made using twin-specific estimated-fetal-weight (EFW) and birth-weight (BW) charts is associated more strongly with adverse neonatal outcomes in twin pregnancies, compared with when the diagnosis is made using singleton charts. METHODS: This was a cohort study of twin pregnancies delivered at St George's Hospital, London, between January 2007 and May 2020. Twin pregnancies complicated by intrauterine death of one or both twins, fetal aneuploidy or major abnormality, twin-twin transfusion syndrome or twin anemia-polycythemia sequence and those delivered before 32 weeks' gestation, were excluded. SGA was defined as EFW or BW below the 10th centile, and was assessed using both twin-specific and singleton EFW and BW charts. The main study outcome was composite adverse neonatal outcome. Mixed-effects logistic regression analysis with random pregnancy-level intercepts was used to test the association between SGA classified using the different charts and adverse neonatal outcome. RESULTS: A total of 1329 twin pregnancies were identified, of which 913 (1826 infants) were included in the analysis. Of these pregnancies, 723 (79.2%) were dichorionic and 190 (20.8%) were monochorionic. Using the singleton charts, 33.3% and 35.7% of pregnancies were classified as SGA based on EFW and BW, respectively. The corresponding values were 5.9% and 5.6% when using the twin-specific charts. Classification as SGA based on EFW using the twin charts was associated significantly with composite adverse neonatal outcome (odds ratio (OR), 4.78 (95% CI, 1.47-14.7); P = 0.007), as compared with classification as appropriate-for-gestational age (AGA). However, classification as SGA based on EFW using the singleton standard was not associated significantly with composite adverse neonatal outcome (OR, 1.36 (95% CI, 0.63-2.88); P = 0.424). Classification as SGA based on EFW using twin-specific standards provided a significantly better model fit than did using the singleton standard (likelihood ratio test, P < 0.001). When twin-specific charts were used, classification as SGA based on BW was associated significantly with a 9.3 times increased odds of composite adverse neonatal outcome (OR, 9.27 (95% CI, 2.86-30.0); P < 0.001). Neonates classified as SGA according to the singleton BW standard but not according to the twin-specific BW standards had a significantly lower rate of composite adverse neonatal outcome than did AGA twins (OR, 0.24 (95% CI, 0.07-0.66); P = 0.009). CONCLUSIONS: The singleton charts classified one-third of twins as SGA, both prenatally and postnatally. Infants classified as SGA according to the twin-specific charts, but not those classified as SGA according to the singleton charts, had a significantly increased risk of adverse neonatal outcome compared with infants classified as AGA. This study provides further evidence that twin-specific charts perform better than do singleton charts in the prediction of adverse neonatal outcome in twin pregnancies. The use of these charts may reduce misclassification of twins as SGA and improve identification of those that are truly growth restricted. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Doenças do Recém-Nascido , Gravidez de Gêmeos , Peso ao Nascer , Estudos de Coortes , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/epidemiologia , Peso Fetal , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Gravidez , Resultado da Gravidez/epidemiologia , Estudos Retrospectivos , Ultrassonografia Pré-Natal
16.
Environ Res ; 215(Pt 2): 114288, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152884

RESUMO

There is abundant epidemiological data indicating that the incidence of severe cases of coronavirus disease (COVID-19) is significantly higher in males than females worldwide. Moreover, genetic variation at the X-chromosome linked TLR7 gene has been associated with COVID-19 severity. It has been suggested that the sex-biased incidence of COVID-19 might be related to the fact that TLR7 escapes X-chromosome inactivation during early embryogenesis in females, thus encoding a doble dose of its gene product compared to males. We analyzed TLR7 expression in two acute phase cohorts of COVID-19 patients that used two different technological platforms, one of them in a multi-tissue context including saliva, nasal, and blood samples, and a third cohort that included different post-infection timepoints of long-COVID-19 patients. We additionally explored methylation patterns of TLR7 using epigenomic data from an independent cohort of COVID-19 patients stratified by severity and sex. In line with genome-wide association studies, we provide supportive evidence indicating that TLR7 has altered CpG methylation patterns and it is consistently downregulated in males compared to females in the most severe cases of COVID-19.


Assuntos
COVID-19 , Infecções por Coronavirus , Coronavirus , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/genética , Coronavirus/genética , Coronavirus/metabolismo , Metilação de DNA , Epigenômica , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Receptor 7 Toll-Like/genética , Transcriptoma , Síndrome de COVID-19 Pós-Aguda
18.
PLoS Med ; 18(2): e1003536, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630834

RESUMO

BACKGROUND: Vitamin D deficiency has been associated with type 1 diabetes in observational studies, but evidence from randomized controlled trials (RCTs) is lacking. The aim of this study was to test whether genetically decreased vitamin D levels are causally associated with type 1 diabetes using Mendelian randomization (MR). METHODS AND FINDINGS: For our two-sample MR study, we selected as instruments single nucleotide polymorphisms (SNPs) that are strongly associated with 25-hydroxyvitamin D (25OHD) levels in a large vitamin D genome-wide association study (GWAS) on 443,734 Europeans and obtained their corresponding effect estimates on type 1 diabetes risk from a large meta-analysis of 12 type 1 diabetes GWAS studies (Ntot = 24,063, 9,358 cases, and 15,705 controls). In addition to the main analysis using inverse variance weighted MR, we applied 3 additional methods to control for pleiotropy (MR-Egger, weighted median, and mode-based estimate) and compared the respective MR estimates. We also undertook sensitivity analyses excluding SNPs with potential pleiotropic effects. We identified 69 lead independent common SNPs to be genome-wide significant for 25OHD, explaining 3.1% of the variance in 25OHD levels. MR analyses suggested that a 1 standard deviation (SD) decrease in standardized natural log-transformed 25OHD (corresponding to a 29-nmol/l change in 25OHD levels in vitamin D-insufficient individuals) was not associated with an increase in type 1 diabetes risk (inverse-variance weighted (IVW) MR odds ratio (OR) = 1.09, 95% CI: 0.86 to 1.40, p = 0.48). We obtained similar results using the 3 pleiotropy robust MR methods and in sensitivity analyses excluding SNPs associated with serum lipid levels, body composition, blood traits, and type 2 diabetes. Our findings indicate that decreased vitamin D levels did not have a substantial impact on risk of type 1 diabetes in the populations studied. Study limitations include an inability to exclude the existence of smaller associations and a lack of evidence from non-European populations. CONCLUSIONS: Our findings suggest that 25OHD levels are unlikely to have a large effect on risk of type 1 diabetes, but larger MR studies or RCTs are needed to investigate small effects.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Análise da Randomização Mendeliana , Deficiência de Vitamina D/genética , Vitamina D/sangue , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 2/complicações , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Deficiência de Vitamina D/sangue
19.
PLoS Med ; 18(6): e1003605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061844

RESUMO

BACKGROUND: Increased vitamin D levels, as reflected by 25-hydroxy vitamin D (25OHD) measurements, have been proposed to protect against COVID-19 based on in vitro, observational, and ecological studies. However, vitamin D levels are associated with many confounding variables, and thus associations described to date may not be causal. Vitamin D Mendelian randomization (MR) studies have provided results that are concordant with large-scale vitamin D randomized trials. Here, we used 2-sample MR to assess evidence supporting a causal effect of circulating 25OHD levels on COVID-19 susceptibility and severity. METHODS AND FINDINGS: Genetic variants strongly associated with 25OHD levels in a genome-wide association study (GWAS) of 443,734 participants of European ancestry (including 401,460 from the UK Biobank) were used as instrumental variables. GWASs of COVID-19 susceptibility, hospitalization, and severe disease from the COVID-19 Host Genetics Initiative were used as outcome GWASs. These included up to 14,134 individuals with COVID-19, and up to 1,284,876 without COVID-19, from up to 11 countries. SARS-CoV-2 positivity was determined by laboratory testing or medical chart review. Population controls without COVID-19 were also included in the control groups for all outcomes, including hospitalization and severe disease. Analyses were restricted to individuals of European descent when possible. Using inverse-weighted MR, genetically increased 25OHD levels by 1 standard deviation on the logarithmic scale had no significant association with COVID-19 susceptibility (odds ratio [OR] = 0.95; 95% CI 0.84, 1.08; p = 0.44), hospitalization (OR = 1.09; 95% CI: 0.89, 1.33; p = 0.41), and severe disease (OR = 0.97; 95% CI: 0.77, 1.22; p = 0.77). We used an additional 6 meta-analytic methods, as well as conducting sensitivity analyses after removal of variants at risk of horizontal pleiotropy, and obtained similar results. These results may be limited by weak instrument bias in some analyses. Further, our results do not apply to individuals with vitamin D deficiency. CONCLUSIONS: In this 2-sample MR study, we did not observe evidence to support an association between 25OHD levels and COVID-19 susceptibility, severity, or hospitalization. Hence, vitamin D supplementation as a means of protecting against worsened COVID-19 outcomes is not supported by genetic evidence. Other therapeutic or preventative avenues should be given higher priority for COVID-19 randomized controlled trials.


Assuntos
COVID-19/sangue , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Deficiência de Vitamina D/sangue , Vitamina D/análogos & derivados , Adulto , Idoso , COVID-19/etiologia , Estudos de Casos e Controles , Causalidade , Suplementos Nutricionais , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hospitalização , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , SARS-CoV-2 , Vitamina D/sangue , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/genética , População Branca/genética
20.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304378

RESUMO

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Assuntos
Densidade Óssea/genética , Estudo de Associação Genômica Ampla , Adolescente , Fatores Etários , Animais , Criança , Pré-Escolar , Loci Gênicos , Humanos , Lactente , Recém-Nascido , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA