Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Chem Rev ; 118(11): 5330-5358, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29676564

RESUMO

New technologies to diagnose malaria at high sensitivity and specificity are urgently needed in the developing world where the disease continues to pose a huge burden on society. Infrared and Raman spectroscopy-based diagnostic methods have a number of advantages compared with other diagnostic tests currently on the market. These include high sensitivity and specificity for detecting low levels of parasitemia along with ease of use and portability. Here, we review the application of vibrational spectroscopic techniques for monitoring and detecting malaria infection. We discuss the role of vibrational (infrared and Raman) spectroscopy in understanding the processes of parasite biology and its application to the study of interactions with antimalarial drugs. The distinct molecular phenotype that characterizes malaria infection and the high sensitivity enabling detection of low parasite densities provides a genuine opportunity for vibrational spectroscopy to become a front-line tool in the elimination of this deadly disease and provide molecular insights into the chemistry of this unique organism.


Assuntos
Malária/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Animais , Eritrócitos/microbiologia , Eritrócitos/patologia , Heme/análise , Hemeproteínas/análise , Humanos , Plasmodium/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Análise Espectral Raman/instrumentação , Vibração
2.
J Biol Chem ; 293(14): 5079-5089, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29449370

RESUMO

In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly-N-acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising in vitro and in vivo activities against many microbes. A human IgG1 mAb (F598) that binds both PNAG and dPNAG has opsonic and protective activities against multiple microbial pathogens and is undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial therapy. Here, to understand how F598 targets PNAG, we determined crystal structures of the unliganded F598 antigen-binding fragment (Fab) and its complexes with N-acetyl-d-glucosamine (GlcNAc) and a PNAG oligosaccharide. We found that F598 recognizes PNAG through a large groove-shaped binding site that traverses the entire light- and heavy-chain interface and accommodates at least five GlcNAc residues. The Fab-GlcNAc complex revealed a deep binding pocket in which the monosaccharide and a core GlcNAc of the oligosaccharide were almost identically positioned, suggesting an anchored binding mechanism of PNAG by F598. The Fab used in our structural analyses retained binding to PNAG on the surface of an antibiotic-resistant, biofilm-forming strain of Staphylococcus aureus Additionally, a model of intact F598 binding to two pentasaccharide epitopes indicates that the Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain. Our findings unravel the structural basis for F598 binding to PNAG on microbial surfaces and biofilms.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Polissacarídeos Bacterianos/imunologia , Anticorpos Monoclonais/química , Biofilmes , Configuração de Carboidratos , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/química , Modelos Moleculares , Polissacarídeos Bacterianos/química , Conformação Proteica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia
3.
Bioinformatics ; 34(22): 3942-3944, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931276

RESUMO

Summary: A sliding window analysis over a protein or genomic sequence is commonly performed, and we present a Python tool, BioStructMap, that extends this concept to three-dimensional (3D) space, allowing the application of a 3D sliding window analysis over a protein structure. BioStructMap is easily extensible, allowing the user to apply custom functions to spatially aggregated data. BioStructMap also allows mapping of underlying genomic sequences to protein structures, allowing the user to perform genetic-based analysis over spatially linked codons-this has applications when selection pressures arise at the level of protein structure. Availability and implementation: The Python BioStructMap package is available at https://github.com/andrewguy/biostructmap and released under the MIT License. An online server implementing standard functionality is available at https://biostructmap.burnet.edu.au. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Conformação Proteica , Proteínas/química , Software , Códon , Biologia Computacional , Genômica
4.
J Infect Dis ; 218(1): 35-43, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29584918

RESUMO

Background: Overcoming antigenic diversity is a key challenge in the development of effective Plasmodium falciparum malaria vaccines. Strategies that promote the generation of antibodies targeting conserved epitopes of vaccine antigens may provide protection against diverse parasites strains. Understanding differences between vaccine-induced and naturally acquired immunity is important to achieving this goal. Methods: We analyzed antibodies generated in a phase 1 human vaccine trial, MSP2-C1, which included 2 allelic forms of MSP2, an abundant vaccine antigen on the merozoite surface. Vaccine-induced responses were assessed for functional activity against multiple parasite strains, and cross-reactivity of antibodies was determined using competition ELISA and epitope mapping approaches. Results: Vaccination induced cytophilic antibody responses with strain-transcending opsonic phagocytosis and complement-fixing function. In contrast to antibodies acquired via natural infection, vaccine-induced antibodies were directed towards conserved epitopes at the C-terminus of MSP2, whereas naturally acquired antibodies mainly targeted polymorphic epitopes. Functional activity of C-terminal-targeted antibodies was confirmed using monoclonal antibodies that promoted opsonic phagocytosis against multiple parasite strains. Conclusion: Vaccination generated markedly different responses to polymorphic antigens than naturally acquired immunity and targeted conserved functional epitopes. Induction of antibodies targeting conserved regions of malaria antigens provides a promising vaccine strategy to overcome antigenic diversity for developing effective malaria vaccines.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Alelos , Animais , Antígenos de Protozoários/genética , Criança , Pré-Escolar , Epitopos/genética , Feminino , Humanos , Masculino , Proteínas Opsonizantes/sangue , Fagocitose , Proteínas de Protozoários/genética
5.
Malar J ; 17(1): 183, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720179

RESUMO

BACKGROUND: Plasmodium vivax is a significant contributor to the global malaria burden, and a vaccine targeting vivax malaria is urgently needed. An understanding of the targets of functional immune responses during the course of natural infection will aid in the development of a vaccine. Antibodies play a key role in this process, with responses against particular epitopes leading to immune selection pressure on these epitopes. A number of techniques exist to estimate levels of immune selection pressure on particular epitopes, with a sliding window analysis often used to determine particular regions likely to be under immune pressure. However, such analysis neglects protein three-dimensional structural information. With this in mind, a newly developed tool, BioStructMap, was applied to two key antigens from Plasmodium vivax: PvAMA1 and PvDBP Region II. This tool incorporates structural information into tests of selection pressure. RESULTS: Sequences from a number of populations were analysed, examining spatially-derived nucleotide diversity and Tajima's D over protein structures for PvAMA1 and PvDBP. Structural patterns of nucleotide diversity were similar across all populations examined, with Domain I of PvAMA1 having the highest nucleotide diversity and displaying significant signatures of immune selection pressure (Tajima's D > 0). Nucleotide diversity for PvDBP was highest bordering the dimerization and DARC-binding interface, although there was less evidence of immune selection pressure on PvDBP compared with PvAMA1. This study supports previous work that has identified Domain I as the main target of immune-mediated selection pressure for PvAMA1, and also supports studies that have identified functional epitopes within PvDBP Region II. CONCLUSIONS: The BioStructMap tool was applied to leading vaccine candidates from P. vivax, to examine structural patterns of selection and diversity across a number of geographic populations. There were striking similarities in structural patterns of diversity across multiple populations. Furthermore, whilst regions of high diversity tended to surround conserved binding interfaces, a number of protein regions with very low diversity were also identified, and these may be useful targets for further vaccine development, given previous evidence of functional antibody responses against these regions.


Assuntos
Antígenos de Protozoários/análise , Variação Genética , Plasmodium vivax/genética , Seleção Genética , Malária Vivax/imunologia , Plasmodium vivax/imunologia
6.
Malar J ; 17(1): 299, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30119664

RESUMO

BACKGROUND: Much of the extensive research regarding transmission of malaria is underpinned by mathematical modelling. Compartmental models, which focus on interactions and transitions between population strata, have been a mainstay of such modelling for more than a century. However, modellers are increasingly adopting agent-based approaches, which model hosts, vectors and/or their interactions on an individual level. One reason for the increasing popularity of such models is their potential to provide enhanced realism by allowing system-level behaviours to emerge as a consequence of accumulated individual-level interactions, as occurs in real populations. METHODS: A systematic review of 90 articles published between 1998 and May 2018 was performed, characterizing agent-based models (ABMs) relevant to malaria transmission. The review provides an overview of approaches used to date, determines the advantages of these approaches, and proposes ideas for progressing the field. RESULTS: The rationale for ABM use over other modelling approaches centres around three points: the need to accurately represent increased stochasticity in low-transmission settings; the benefits of high-resolution spatial simulations; and heterogeneities in drug and vaccine efficacies due to individual patient characteristics. The success of these approaches provides avenues for further exploration of agent-based techniques for modelling malaria transmission. Potential extensions include varying elimination strategies across spatial landscapes, extending the size of spatial models, incorporating human movement dynamics, and developing increasingly comprehensive parameter estimation and optimization techniques. CONCLUSION: Collectively, the literature covers an extensive array of topics, including the full spectrum of transmission and intervention regimes. Bringing these elements together under a common framework may enhance knowledge of, and guide policies towards, malaria elimination. However, because of the diversity of available models, endorsing a standardized approach to ABM implementation may not be possible. Instead it is recommended that model frameworks be contextually appropriate and sufficiently described. One key recommendation is to develop enhanced parameter estimation and optimization techniques. Extensions of current techniques will provide the robust results required to enhance current elimination efforts.


Assuntos
Transmissão de Doença Infecciosa , Interações Hospedeiro-Parasita , Malária/transmissão , Modelos Estatísticos , Mosquitos Vetores/fisiologia , Animais , Humanos
7.
Anal Chem ; 89(10): 5238-5245, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28409627

RESUMO

New diagnostic tools that can detect malaria parasites in conjunction with other diagnostic parameters are urgently required. In this study, Attenuated Total Reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with Partial Least Square Discriminant Analysis (PLS-DA) and Partial Least Square Regression (PLS-R) have been applied as a point-of-care test for identifying malaria parasites, blood glucose, and urea levels in whole blood samples from thick blood films on glass slides. The specificity for the PLS-DA was found to be 98% for parasitemia levels >0.5%, but a rather low sensitivity of 70% was achieved because of the small number of negative samples in the model. In PLS-R the Root Mean Square Error of Cross Validation (RMSECV) for parasite concentration (0-5%) was 0.58%. Similarly, for glucose (0-400 mg/dL) and urea (0-250 mg/dL) spiked samples, relative RMSECVs were 16% and 17%, respectively. The method reported here is the first example of multianalyte/disease diagnosis using ATR-FTIR spectroscopy, which in this case, enabled the simultaneous quantification of glucose and urea analytes along with malaria parasitemia quantification using one spectrum obtained from a single drop of blood on a glass microscope slide.


Assuntos
Glucose/química , Malária/diagnóstico , Plasmodium/citologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ureia/química , Área Sob a Curva , Análise Discriminante , Teste em Amostras de Sangue Seco , Vidro/química , Humanos , Análise dos Mínimos Quadrados , Plasmodium/química , Curva ROC
8.
Malar J ; 16(1): 361, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893237

RESUMO

Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk of severe haemolysis following the administration of 8-aminoquinoline compounds. Primaquine is the only widely available 8-aminoquinoline for the radical cure of Plasmodium vivax. Tafenoquine is under development with the potential to simplify treatment regimens, but point-of-care (PoC) tests will be needed to provide quantitative measurement of G6PD activity prior to its administration. There is currently a lack of appropriate G6PD PoC tests, but a number of new tests are in development and are likely to enter the market in the coming years. As these are implemented, they will need to be validated in field studies. This article outlines the technical details for the field evaluation of novel quantitative G6PD diagnostics such as sample handling, reference testing and statistical analysis. Field evaluation is based on the comparison of paired samples, including one sample tested by the new assay at point of care and one sample tested by the gold-standard reference method, UV spectrophotometry in an established laboratory. Samples can be collected as capillary or venous blood; the existing literature suggests that potential differences in capillary or venous blood are unlikely to affect results substantially. The collection and storage of samples is critical to ensure preservation of enzyme activity, it is recommended that samples are stored at 4 °C and testing occurs within 4 days of collection. Test results can be visually presented as scatter plot, Bland-Altman plot, and a histogram of the G6PD activity distribution of the study population. Calculating the adjusted male median allows categorizing results according to G6PD activity to calculate standard performance indicators and to perform receiver operating characteristic (ROC) analysis.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/sangue , Programas de Rastreamento/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Programas de Rastreamento/instrumentação
9.
Malar J ; 16(1): 362, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893264

RESUMO

BACKGROUND: In a drug-resistant, malaria elimination setting like Western Cambodia, field research is essential for the development of novel anti-malarial regimens and the public health solutions necessary to monitor the spread of resistance and eliminate infection. Such field studies often face a variety of similar implementation challenges, but these are rarely captured in a systematic way or used to optimize future study designs that might overcome similar challenges. Field-based research staff often have extensive experience and can provide valuable insight regarding these issues, but their perspectives and experiences are rarely documented and seldom integrated into future research protocols. This mixed-methods analysis sought to gain an understanding of the daily challenges encountered by research field staff in the artemisinin-resistant, malaria elimination setting of Western Cambodia. In doing so, this study seeks to understand how the experiences and opinions of field staff can be captured, and used to inform future study designs. METHODS: Twenty-two reports from six field-based malaria studies conducted in Western Cambodia were reviewed using content analysis to identify challenges to conducting the research. Informal Interviews, Focus Group Discussions and In-depth Interviews were also conducted among field research staff. Thematic analysis of the data was undertaken using Nvivo 9® software. Triangulation and critical case analysis was also used. RESULTS: There was a lack of formalized avenues through which field workers could report challenges experienced when conducting the malaria studies. Field research staff faced significant logistical barriers to participant recruitment and data collection, including a lack of available transportation to cover long distances, and the fact that mobile and migrant populations (MMPs) are usually excluded from studies because of challenges in follow-up. Cultural barriers to communication also hindered participant recruitment and created unexpected delays. Field staff often paid a physical, emotional and financial cost, going beyond their duty in order to keep the study running. CONCLUSIONS: Formal monthly reports filled out by field study staff could be a key tool for capturing field study staff experiences effectively, but require specific report fields to encourage staff to outline their challenges and to propose potential solutions. Forging strong bonds with communities and their leaders may improve communication, and decrease barriers to participant recruitment. Study designs that make it feasible for MMPs to participate should be pursued; in addition to increasing the potential participant pool, this will ensure that the most malaria-endemic demographic is taken into account in research studies. Overlaps between clinical care and research create ethical dilemmas for study staff, a fact that warrants careful consideration. Lessons learned from study field staff should be used to create a set of locally-relevant recommendations to inform future study designs.


Assuntos
Antimaláricos/farmacologia , Controle de Doenças Transmissíveis , Resistência a Medicamentos , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Pesquisadores , Camboja , Humanos , Malária Falciparum/transmissão , Pesquisadores/estatística & dados numéricos
10.
Malar J ; 16(1): 378, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927405

RESUMO

BACKGROUND: Multi-drug-resistant Plasmodium falciparum threatens malaria elimination efforts in Cambodia and the Greater Mekong Subregion (GMS). Malaria burden in the GMS is higher among certain high-risk demographic groups in Cambodia, especially among migrant and mobile populations (MMPs). This respondent driven sampling (RDS) study was conducted in order to determine malaria knowledge, treatment-seeking behaviours and preventive practices among two MMP groups in Western Cambodia. METHODS: An RDS survey of MMPs was implemented in four purposively-selected communes along the Thai-Cambodia border; two in Veal Veang District and two in Pailin Province, chosen due to their sizeable MMP groups, their convenience of access, and their proximity to Thailand, which allowed for comparison with RDS studies in Thailand. RESULTS: There were 764 participants in Pailin Province and 737 in Veal Veang District. Health messages received in Veal Veang were most likely to come from billboards (76.5%) and family and friends (57.7%), while in Pailin they were most likely to come from sources like radio (57.1%) and television (31.3%). Knowledge of malaria transmission by mosquito and prevention by bed net was above 94% in both locations, but some misinformation regarding means of transmission and prevention methods existed, predominantly in Veal Veang. Ownership of treated bed nets was lower in Pailin than in Veal Veang (25.3% vs 53.2%), while reported use the night before the survey was higher in Pailin than in Veal Veang (57.1% vs 31.6%). Use of private sector health and pharmaceutical services was common, but 81.1% of patients treated for malaria in Pailin and 86.6% in Veal Veang had received a diagnostic test. Only 29.6% of patients treated in Pailin and 19.6% of those treated in Veal Veng reported receiving the indicated first-line treatment. DISCUSSION: Barriers in access to malaria prevention and case management were common among MMPs, with marked variation by site. Resolving both nation-wide and MMP-specific challenges will require targeted interventions that take into account this heterogeneity.


Assuntos
Comportamentos Relacionados com a Saúde , Conhecimentos, Atitudes e Prática em Saúde , Malária/psicologia , Prevenção Primária/estatística & dados numéricos , Migrantes/psicologia , Antimaláricos/farmacologia , Artemisininas/farmacologia , Camboja , Resistência a Medicamentos , Feminino , Humanos , Masculino , Estudos de Amostragem , Migrantes/estatística & dados numéricos
11.
Malar J ; 16(1): 141, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381261

RESUMO

The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.


Assuntos
Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Malária Vivax/tratamento farmacológico , Ásia , Testes Diagnósticos de Rotina/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Humanos , Ilhas do Pacífico
12.
Analyst ; 142(8): 1192-1199, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-27921101

RESUMO

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) has the potential to become a new diagnostic tool for malaria and other diseases. For point-of-care testing, the use of ATR-FTIR in malaria diagnosis enables the analysis of blood in the aqueous state, which represents an enormous advantage by minimising the sample preparation by removing the need for cell fixation. Here we report the quantification of malaria parasitemia in human RBCs in their normal physiological aqueous state. A potential confounding variable for spectroscopic measurements performed on blood are the various anticoagulants that are required to prevent clotting. Accordingly, we tested the effects of 3 common anticoagulants; Sodium Citrate (SC), Potassium Ethylenediaminetetraacetic Acid (EDTA) and lithium heparin on plasma and whole blood in the aqueous and dry phase. Principal Component Analysis (PCA) revealed the model was heavily influenced by the anticoagulants in the case of dry samples, however, in aqueous whole blood samples, the effect was less pronounced as the water in the sample presumably diluted the amount of anticoagulant in contact with the ATR crystal. The possible influence of the anticoagulant effect on the ability to quantify parasitemia levels was tested using Partial Least Squares Regression Analysis (PLS-R). There was no influence of anticoagulants on quantification in the 0-1% range, however attempts to quantify at lower levels (0-0.1%) was best achieved with heparin compared to the other two anticoagulants. The results demonstrate ability to diagnose malaria using ATR-FTIR spectroscopy using wet RBC samples as well as underscoring the desirability to perform wet measurements as these minimise the possible confounding influence of anticoagulants used in blood collection.


Assuntos
Anticoagulantes/química , Eritrócitos/parasitologia , Malária/diagnóstico , Parasitemia/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier , Humanos
13.
BMC Med ; 14(1): 112, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27487767

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that has newly emerged as a significant global threat, especially to pregnancy. Recent major outbreaks in the Pacific and in Central and South America have been associated with an increased incidence of microcephaly and other abnormalities of the central nervous system in neonates. The causal link between ZIKV infection during pregnancy and microcephaly is now strongly supported. Over 2 billion people live in regions conducive to ZIKV transmission, with ~4 million infections in the Americas predicted for 2016. Given the scale of the current pandemic and the serious and long-term consequences of infection during pregnancy, the impact of ZIKV on health services and affected communities could be enormous. This further highlights the need for a rapid global public health and research response to ZIKV to limit and prevent its impact through the development of therapeutics, vaccines, and improved diagnostics. Here we review the epidemiology of ZIKV; the threat to pregnancy; the clinical consequences and broader impact of ZIKV infections; and the virus biology underpinning new interventions, diagnostics, and insights into the mechanisms of disease.


Assuntos
Complicações Infecciosas na Gravidez/epidemiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Incidência , Microcefalia/virologia , Pandemias , Gravidez , Complicações Infecciosas na Gravidez/virologia , Saúde Pública
14.
Malar J ; 15(1): 547, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829430

RESUMO

BACKGROUND: Malaria antibody responses measured at delivery have been associated with protection from maternal anaemia and low birth weight deliveries. Whether malarial antibodies present in the first half of pregnancy may protect from these or other poor birth outcomes is unclear. To determine whether malaria antibodies in the first half of pregnancy predict pregnancy outcomes, antibodies were measured to a range of merozoite antigens and to antigens expressed on the surface of parasitized red blood cells (pRBCs) in plasma samples collected at 14-20 weeks of gestation from Malawian women. The latter antibodies were measured as total IgG to pRBCs, and antibodies promoting opsonic phagocytosis of pRBCs. Associations between antibodies and maternal haemoglobin in late pregnancy or newborn size were investigated, after adjusting for potential covariates. RESULTS: Antibodies to pRBC surface antigens were associated with higher haemoglobin concentration at 36 weeks. Total IgG to pRBCs was associated with 0.4 g/l [(95% confidence interval (0.04, 0.8)] increase in haemoglobin, and opsonizing antibody with 0.5 (0.05, 0.9) increase in haemoglobin for each 10% increase in antibody. These antibodies were not associated with birthweight, placental malaria, or newborn anthropometrics. Antibodies to merozoite antigens and non-placental-binding IEs were not associated with decreased risk of any of these outcomes. In some instances, they were negatively associated with outcomes of interest. CONCLUSION: Antibodies to placental-binding infected erythrocytes may be associated with higher haemoglobin levels in pregnancy, whereas antibodies to other malaria antigens may instead be markers of malaria exposure. Trial registration clinicaltrials.gov NCT01239693. Registered Nov 10, 2010.


Assuntos
Malária/imunologia , Complicações Infecciosas na Gravidez/imunologia , Resultado da Gravidez , Adulto , Anticorpos Antiprotozoários/sangue , Suplementos Nutricionais , Feminino , Alimentos , Hemoglobinas/análise , Humanos , Imunoglobulina G/sangue , Malaui , Proteínas Opsonizantes/sangue , Gravidez , Adulto Jovem
15.
Malar J ; 15(1): 434, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562347

RESUMO

BACKGROUND: During the process of malaria elimination in the Greater Mekong Sub-region, mobile and migrant populations (MMPs) have been identified as the most at-risk demographic. An important sub-group of MMPs are seasonal workers, and this paper presents an evaluation of the reach and effectiveness of interventions tailored towards this group and was carried out as part of the Containment Project from 2009-11. METHODS: A mixed-methods study was conducted in Pailin Province in Western Cambodia. Three-hundred-and-four seasonal workers were surveyed using a structured questionnaire. Qualitative data were gathered through a total of eight focus group discussions and 14 in-depth interviews. Data triangulation of the qualitative and quantitative data was used during analysis. RESULTS: High mobility and low access of the target population to the interventions, as well as lack of social and anthropological research that led to implementation oversights, resulted in under-exposure of seasonal workers to interventions. Consequently, their reach and impact were severely limited. Some services, particularly Mobile Malaria Workers, had the ability to significantly impact key factors, such as risky behaviours among those they did reach. Others, like Listening and Viewing Clubs and mass media campaigns, showed little impact. CONCLUSIONS: There is potential in two of the interventions assessed, but high mobility and inadequate exposure of seasonal workers to these interventions must be considered in the development and planning of future interventions to avoid investing in low-impact activities and ensure that all interventions perform according to their maximum potential. This will be critical in order for Cambodia to achieve its aim of malaria elimination. The lessons learned from this study can be extrapolated to other areas of health care in Cambodia and other countries in order to reduce the gap between healthcare provided to MMPs, especially seasonal workers, and to the general population.


Assuntos
Controle de Doenças Transmissíveis/métodos , Transmissão de Doença Infecciosa/prevenção & controle , Malária/epidemiologia , Malária/prevenção & controle , Migrantes , Adulto , Camboja/epidemiologia , Estudos Transversais , Feminino , Humanos , Entrevistas como Assunto , Malária/transmissão , Masculino , Adulto Jovem
16.
Malar J ; 15: 303, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251357

RESUMO

On World Malaria Day 2016, The Kingdom of Cambodia's National celebrations served as a prime of example of how political will is currently being exercised in Cambodia through high-level governmental support for malaria elimination. The main country event was well-planned and coordinated by the National Programme for Parasitology, Entomology and Malaria Control (CNM), and included key contributions from high-ranking political figures, such as His Excellency (H.E) Mam Bun Heng (Minister of Health), and H.E. Keut Sothea (Governor of Pailin Province). There were more than 1000 attendees, ranging from Village Malaria Workers and high school students to CNM's director and other officials in Pailin Province, Western Cambodia. A strong inter-sectoral participation included attendances from the Ministry of Education and high-level representatives of the Cambodian Armed Forces, as well as Malaria Partners like the World Health Organization.


Assuntos
Erradicação de Doenças , Política de Saúde , Malária/prevenção & controle , Camboja , Humanos
17.
Infect Immun ; 83(2): 646-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422270

RESUMO

Individuals in areas of Plasmodium falciparum endemicity develop immunity to malaria after repeated exposure. Knowledge of the acquisition and nature of protective immune responses to P. falciparum is presently limited, particularly for young children. We examined antibodies (IgM, IgG, and IgG subclasses) to merozoite antigens and their relationship to the prospective risk of malaria in children 1 to 4 years of age in a region of malaria endemicity in Papua New Guinea. IgG, IgG1, and IgG3 responses generally increased with age, were higher in children with active infection, and reflected geographic heterogeneity in malaria transmission. Antigenic properties, rather than host factors, appeared to be the main determinant of the type of IgG subclass produced. High antibody levels were not associated with protection from malaria; in contrast, they were typically associated with an increased risk of malaria. Adjustment for malaria exposure, using a novel molecular measure of the force of infection by P. falciparum, accounted for much of the increased risk, suggesting that the antibodies were markers of higher exposure to P. falciparum. Comparisons between antibodies in this cohort of young children and in a longitudinal cohort of older children suggested that the lack of protective association was explained by lower antibody levels among young children and that there is a threshold level of antibodies required for protection from malaria. Our results suggest that in populations with low immunity, such as young children, antibodies to merozoite antigens may act as biomarkers of malaria exposure and that, with increasing exposure and responses of higher magnitude, antibodies may act as biomarkers of protective immunity.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Fatores Etários , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Lactente , Malária Falciparum/microbiologia , Malária Falciparum/transmissão , Masculino , Papua Nova Guiné , Proteínas de Protozoários/imunologia
18.
Clin Infect Dis ; 61(8): 1244-52, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26136391

RESUMO

BACKGROUND: The targets and mechanisms of human immunity to malaria are poorly understood, which poses a major barrier to malaria vaccine development. Antibodies play a key role in human immunity and may act by inhibiting receptor-binding functions of key merozoite invasion ligands. Antibodies to the major invasion ligand and vaccine candidate, erythrocyte-binding antigen 175 (EBA-175), have been linked with protection, but how these antibodies function has not been established. METHODS: We developed 2 new assays that quantify the ability of antibodies to inhibit binding of EBA-175 to its erythrocyte receptor, glycophorin A, using either native or recombinant EBA-175. Binding-inhibitory antibodies were evaluated in a longitudinal cohort study of Papua New Guinean children and related to risk of malaria, age, infection status, and markers of parasite exposure. RESULTS: Binding-inhibition assays (BIAs) were reproducible, and the 2 assays had a high level of agreement. Inhibitory antibodies were common among children, acquired in association with markers of increasing parasite exposure, and high in those children with active infection. Inhibitory antibodies correlated with total immunoglobulin G levels to the EBA-175 binding domain (region II). Importantly, binding-inhibitory antibodies were significantly associated with protection from symptomatic malaria when measured using either BIA. CONCLUSIONS: Findings suggest that naturally acquired binding-inhibitory antibodies are an important functional mechanism that contributes to protection against malaria and further supports the potential of EBA-175 as a vaccine candidate. Identifying vaccines and approaches that induce potent binding-inhibitory antibodies may be a valuable strategy in the development of highly efficacious malaria vaccines.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Imunoglobulina G/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Adolescente , Sítios de Ligação , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Glicoforinas/metabolismo , Humanos , Imunoensaio , Imunoglobulina G/sangue , Estudos Longitudinais , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Merozoítos/imunologia
19.
Malar J ; 14: 193, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957793

RESUMO

BACKGROUND: Malaria and undernutrition frequently coexist, especially in pregnant women and young children. Nutrient supplementation of these vulnerable groups might reduce their susceptibility to malaria by improving immunity. METHODS: Antibody immunity to antigens expressed by a placental-binding parasite isolate, a non-placental binding parasite isolate, merozoites and schizonts at enrolment (before 20 gestation weeks) and at 36 gestation weeks were measured in 1,009 Malawian pregnant women receiving a daily lipid-based nutrient supplement, multiple micronutrients or iron and folic acid, who were participants in a randomized clinical trial assessing the effects of nutrient supplementation on pregnancy outcomes and child development (registration ID: NCT01239693). RESULTS: Antibodies to placental-binding isolates significantly increased while antibodies to most merozoite antigens declined over pregnancy. Overall, after adjustment for covariates, the type of supplementation did not influence antibody levels at 36 gestation weeks or the rate of change in antibody levels from enrolment to 36 weeks. A negative association between maternal body mass index and opsonizing antibodies to placental-binding antigens (coefficient (95% CI) -1.04 (-1.84, -0.24), was observed. Similarly, women with higher socioeconomic status had significantly lower IgG and opsonizing antibodies to placental-binding antigens. Neither of these associations was significantly influenced by the supplementation type. CONCLUSIONS: In the current cohort nutrient supplementation did not affect anti-malarial antibody responses, but poor and undernourished mothers should be a priority group in future trials.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticorpos Antiprotozoários/sangue , Suplementos Nutricionais/análise , Metabolismo dos Lipídeos/efeitos dos fármacos , Malária/dietoterapia , Plasmodium/imunologia , Adolescente , Adulto , Estudos de Coortes , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Humanos , Ferro/administração & dosagem , Ferro/metabolismo , Malária/parasitologia , Malaui , Merozoítos/imunologia , Micronutrientes/administração & dosagem , Micronutrientes/metabolismo , Gravidez , Resultado da Gravidez , Esquizontes/imunologia , Adulto Jovem
20.
J Immunol ; 191(2): 785-94, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23776178

RESUMO

Abs that inhibit Plasmodium falciparum invasion of erythrocytes form an important component of human immunity against malaria, but key target Ags are largely unknown. Phenotypic variation by P. falciparum mediates the evasion of inhibitory Abs, contributing to the capacity of P. falciparum to cause repeat and chronic infections. However, Ags involved in mediating immune evasion have not been defined, and studies of the function of human Abs are limited. In this study, we used novel approaches to determine the importance of P. falciparum erythrocyte-binding Ags (EBAs), which are important invasion ligands, as targets of human invasion-inhibitory Abs and define their role in contributing to immune evasion through variation in function. We evaluated the invasion-inhibitory activity of acquired Abs from malaria-exposed children and adults from Kenya, using P. falciparum with disruption of genes encoding EBA140, EBA175, and EBA181, either individually or combined as EBA140/EBA175 or EBA175/EBA181 double knockouts. Our findings provide important new evidence that variation in the expression and function of the EBAs plays an important role in evasion of acquired Abs and that a substantial amount of phenotypic diversity results from variation in expression of different EBAs that contributes to immune evasion by P. falciparum. All three EBAs were identified as important targets of naturally acquired inhibitory Abs demonstrated by differential inhibition of parental parasites greater than EBA knockout lines. This knowledge will help to advance malaria vaccine development and suggests that multiple invasion ligands need to be targeted to overcome the capacity of P. falciparum for immune evasion.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Proteínas de Transporte/imunologia , Evasão da Resposta Imune , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Proteínas de Transporte/genética , Criança , Pré-Escolar , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Técnicas de Inativação de Genes , Variação Genética , Humanos , Malária Falciparum/sangue , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Proteínas de Membrana , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA