Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 375(2108)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29084886

RESUMO

Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

2.
Phys Rev Lett ; 111(10): 100506, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166645

RESUMO

We control quantum fluctuations to create the ground state magnetic phases of a classical Ising model with a tunable longitudinal magnetic field using a system of 6 to 10 atomic ion spins. Because of the long-range Ising interactions, the various ground state spin configurations are separated by multiple first-order phase transitions, which in our zero temperature system cannot be driven by thermal fluctuations. We instead use a transverse magnetic field as a quantum catalyst to observe the first steps of the complete fractal devil's staircase, which emerges in the thermodynamic limit and can be mapped to a large number of many-body and energy-optimization problems.

3.
Phys Rev Lett ; 108(11): 113002, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540471

RESUMO

Antihydrogen atoms (H¯) are confined in an Ioffe trap for 15-1000 s-long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons (p¯) and positrons (e(+)) interact, 5±1 simultaneously confined ground-state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped H¯ are critical if laser cooling of trapped H¯ is to be demonstrated and spectroscopic studies at interesting levels of precision are to be carried out.

4.
Phys Rev Lett ; 106(7): 073002, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405511

RESUMO

Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3×10(6) p are cooled to 3.5 K-10(3) times more cold p and a 3 times lower p temperature than previously reported. A second cooling method cools p plasmas via the synchrotron radiation of embedded e(-) (with many fewer e(-) than p in preparation for adiabatic cooling. No p are lost during either process-a significant advantage for rare particles.

5.
Phys Rev Lett ; 105(21): 213002, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231298

RESUMO

Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.

6.
Phys Rev B ; 932016.
Artigo em Inglês | MEDLINE | ID: mdl-31276074

RESUMO

Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1/rα , using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α ≲ 3 long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U(1) continuous symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally in the near future.

7.
Science ; 345(6195): 430-3, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25061207

RESUMO

Quantum simulators, in which well-controlled quantum systems are used to reproduce the dynamics of less understood ones, have the potential to explore physics inaccessible to modeling with classical computers. However, checking the results of such simulations also becomes classically intractable as system sizes increase. Here, we introduce and implement a coherent imaging spectroscopic technique, akin to magnetic resonance imaging, to validate a quantum simulation. We use this method to determine the energy levels and interaction strengths of a fully connected quantum many-body system. Additionally, we directly measure the critical energy gap near a quantum phase transition. We expect this general technique to become a verification tool for quantum simulators once experiments advance beyond proof-of-principle demonstrations and exceed the resources of conventional computers.

8.
Phys Rev Lett ; 100(11): 113001, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517780

RESUMO

Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA