Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2117364119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439049

RESUMO

Ecological communities are constantly exposed to multiple natural and anthropogenic disturbances. Multivariate composition (if recovered) has been found to need significantly more time to be regained after pulsed disturbance compared to univariate diversity metrics and functional endpoints. However, the mechanisms driving the different recovery times of communities to single and multiple disturbances remain unexplored. Here, we apply quantitative ecological network analyses to try to elucidate the mechanisms driving long-term community-composition dissimilarity and late-stage disturbance interactions at the community level. For this, we evaluate the effects of two pesticides, nutrient enrichment, and their interactions in outdoor mesocosms containing a complex freshwater community. We found changes in interactions strength to be strongly related to compositional changes and identified postdisturbance interaction-strength rewiring to be responsible for most of the observed compositional changes. Additionally, we found pesticide interactions to be significant in the long term only when both interaction strength and food-web architecture are reshaped by the disturbances. We suggest that quantitative network analysis has the potential to unveil ecological processes that prevent long-term community recovery.


Assuntos
Ecossistema , Cadeia Alimentar
2.
Ecotoxicol Environ Saf ; 282: 116751, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024950

RESUMO

Most studies assessing the combined effects of chemical and non-chemical stressors on aquatic ecosystems have been based on synchronous stressor applications. However, asynchronous exposure scenarios may be more common in nature, particularly for pulsed stressors such as heatwaves and pesticide concentration peaks. In this study, we investigated the single and combined effects of the insecticide chlorpyrifos (CPF) and a heatwave (HW) on a zooplankton community representative of a Mediterranean coastal wetland using synchronous (CPF+HW) and asynchronous (HW→CPF and CPF→HW) exposure scenarios. CPF was applied at a concentration of 0.8 µg/L (single pulse), and the HW was simulated by a temperature increase of 8°C above the control temperature (20°C) for 7 days in freshwater microcosms. The interaction between stressors in synchrony resulted in synergistic effects at the population level (Daphnia magna) and additive at the community level. The partial reduction of sensitive species resulted in an abundance increase of competing species that were more tolerant to the evaluated stressors (e.g. Moina sp.). The asynchronous exposure scenarios resulted in a similar abundance decline of sensitive populations as compared to the synchronous one; however, the timing of stressor resulted in different responses in the long term. In the HW→CPF treatment, the D. magna population recovered at least one month faster than in the CPF+HW treatment, probably due to survival selection and cross-tolerance mechanisms. In the CPF→HW treatment, the effects lasted longer than in the CPF+HW, and the population did not recover within the experimental period, most likely due to the energetic costs of detoxification and effects on internal damage recovery. The different timing and magnitude of indirect effects among the tested asynchronous scenarios resulted in more severe effects on the structure of the zooplankton community in the CPF→HW treatment. Our study highlights the relevance of considering the order of stressors to predict the long-term effects of chemicals and heatwaves both at the population and community levels.

3.
Glob Chang Biol ; 28(4): 1248-1267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735747

RESUMO

Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.


Assuntos
Ecossistema , Água Doce , Humanos
4.
Ecol Lett ; 24(8): 1594-1606, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33979468

RESUMO

Ecological stability is a multidimensional construct. Investigating multiple stability dimensions is key to understand how ecosystems respond to disturbance. Here, we evaluated the single and combined effects of common agricultural stressors (insecticide, herbicide and nutrients) on four dimensions of stability (resistance, resilience, recovery and invariability) and on the overall dimensionality of stability (DS) using the results of a freshwater mesocosm experiment. Functional recovery and resilience to pesticides were enhanced in nutrient-enriched systems, whereas compositional recovery was generally not achieved. Pesticides did not affect compositional DS, whereas functional DS was significantly increased by the insecticide only in non-enriched systems. Stressor interactions acted non-additively on single stability dimensions as well as on functional DS. Moreover we demonstrate that pesticides can modify the correlation between functional and compositional aspects of stability. Our study shows that different disturbance types, and their interactions, require specific management actions to promote ecosystem stability.


Assuntos
Herbicidas , Praguicidas , Agricultura , Ecossistema , Água Doce , Herbicidas/toxicidade , Praguicidas/toxicidade
5.
Rev Environ Contam Toxicol ; 257: 163-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487249

RESUMO

Plastic litter dispersed in the different environmental compartments represents one of the most concerning problems associated with human activities. Specifically, plastic particles in the micro and nano size scale are ubiquitous and represent a threat to human health and the environment. In the last few decades, a huge amount of research has been devoted to evaluate several aspects of micro/nano-plastic contamination: origin and emissions, presence in different compartments, environmental fate, effects on human health and the environment, transfer in the food web and the role of associated chemicals and microorganisms. Nevertheless, despite the bulk of information produced, several knowledge gaps still exist. The objective of this paper is to highlight the most important of these knowledge gaps and to provide suggestions for the main research needs required to describe and understand the most controversial points to better orient the research efforts for the near future. Some of the major issues that need further efforts to improve our knowledge on the exposure, effects and risk of micro/nano-plastics are: harmonization of sampling procedures; development of more accurate, less expensive and less time-consuming analytical methods; assessment of degradation patterns and environmental fate of fragments; evaluating the capabilities for bioaccumulation and transfer to the food web; and evaluating the fate and the impact of chemicals and microorganisms associated with micro/nano-plastics. The major gaps in all sectors of our knowledge, from exposure to potentially harmful effects, refer to small size microplastics and, particularly, to the occurrence, fate and effects of nanoplastics.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos/toxicidade , Pesquisa , Poluentes Químicos da Água/análise
6.
Proc Natl Acad Sci U S A ; 115(12): 2958-2963, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507224

RESUMO

Food production is a major driver of global environmental change and the overshoot of planetary sustainability boundaries. Greater affluence in developing nations and human population growth are also increasing demand for all foods, and for animal proteins in particular. Consequently, a growing body of literature calls for the sustainable intensification of food production, broadly defined as "producing more using less". Most assessments of the potential for sustainable intensification rely on only one or two indicators, meaning that ecological trade-offs among impact categories that occur as production intensifies may remain unaccounted for. The present study addresses this limitation using life cycle assessment (LCA) to quantify six local and global environmental consequences of intensifying aquaculture production in Bangladesh. Production data are from a unique survey of 2,678 farms, and results show multidirectional associations between the intensification of aquaculture production and its environmental impacts. Intensification (measured in material and economic output per unit primary area farmed) is positively correlated with acidification, eutrophication, and ecotoxicological impacts in aquatic ecosystems; negatively correlated with freshwater consumption; and indifferent with regard to global warming and land occupation. As production intensifies, the geographical locations of greenhouse gas (GHG) emissions, acidifying emissions, freshwater consumption, and land occupation shift from the immediate vicinity of the farm to more geographically dispersed telecoupled locations across the globe. Simple changes in fish farming technology and management practices that could help make the global transition to more intensive forms of aquaculture be more sustainable are identified.


Assuntos
Aquicultura/economia , Animais , Bangladesh , Benchmarking , Comércio , Meio Ambiente , Peixes/fisiologia , Humanos , Modelos Teóricos
7.
Rev Environ Contam Toxicol ; 250: 1-43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025906

RESUMO

Plastics and microplastics are nowadays ubiquitously found in the environment. This has raised concerns on possible adverse effects for human health and the environment. To date, extensive information exists on their occurrence in the marine environment. However, information on their different sources and their transport within and across different freshwater and terrestrial ecosystems is still limited. Therefore, we assessed the current knowledge regarding the industrial sources of plastics and microplastics, their environmental pathways and load rates and their occurrence and fate in different environmental compartments, thereby highlighting important data gaps which are needed to better describe their global environmental cycle and exposure. This study shows that the quantitative assessment of the contribution of the different major sources of plastics, microplastics and nanoplastics to aquatic and terrestrial ecosystems is challenged by some data limitations. While the presence of microplastics in wastewater and freshwater is relatively well studied, data on sediments and especially soil ecosystems are too limited. Moreover, the overall occurrence of large-sized plastics, the patterns of microplastic and nanoplastic formation from them, the presence and deposition of plastic particles from the atmosphere and the fluxes of all kinds of plastics from soils towards aquatic environments (e.g. by surface water runoff, soil infiltration) are still poorly understood. Finally, this study discusses several research areas that need urgent development in order to better understand the potential ecological risks of plastic pollution and provides some recommendations to better manage and control plastic and microplastic inputs into the environment.


Assuntos
Água Doce , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Ecotoxicol Environ Saf ; 191: 110172, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978762

RESUMO

The majority of pharmaceuticals and personal health-care products are ionisable molecules at environmentally relevant pHs. The ionization state of these molecules in freshwater ecosystems may influence their toxicity potential to aquatic organisms. In this study we evaluated to what extent varying pH conditions may influence the toxicity of the antibiotic enrofloxacin (ENR) and the personal care product ingredient triclosan (TCS) to three freshwater invertebrates: the ephemeropteran Cloeon dipterum, the amphipod Gammarus pulex and the snail Physella acuta. Acute toxicity tests were performed by adjusting the water pH to four nominal levels: 6.5, 7.0, 7.5 and 8.0. Furthermore, we tested the efficiency of three toxicity models with different assumptions regarding the uptake and toxicity potential of ionisable chemicals with the experimental data produced in this study. The results of the toxicity tests indicate that pH fluctuations of only 1.5 units can influence EC50-48 h and EC50-96 h values by a factor of 1.4-2.7. Overall, the model that only focuses on the fraction of neutral chemical and the model that takes into account ion-trapping of the test molecules showed the best performance, although present limitations to perform risk assessments across a wide pH range (i.e., well above or below the substance pKa). Under such conditions, the model that takes into account the toxicity of the neutral and the ionized chemical form is preferred. The results of this study show that pH fluctuations can have a considerable influence on toxicity thresholds, and should therefore be taken into account for the risk assessment of ionisable pharmaceuticals and personal health-care products. Based on our results, an assessment factor of at least three should be used to account for toxicity differences between standard laboratory and field pH conditions. The models evaluated here can be used to perform refined risk assessments by taking into account the influence of temporal and spatial pH fluctuations on aquatic toxicity.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cosméticos/toxicidade , Água Doce/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Cosméticos/química , Ecossistema , Enrofloxacina/química , Enrofloxacina/toxicidade , Concentração de Íons de Hidrogênio , Modelos Teóricos , Medição de Risco , Caramujos/efeitos dos fármacos , Testes de Toxicidade , Triclosan/química , Triclosan/toxicidade , Poluentes Químicos da Água/química
9.
Ecotoxicol Environ Saf ; 199: 110669, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450358

RESUMO

Ciliates are key components of aquatic ecosystems, significantly contributing to the decomposition of organic matter and energy transfer to higher trophic levels. They are considered good biological indicators of chemical pollution and relatively sensitive to heavy metal contamination. In this study, we performed a meta-analysis of the available toxicity data of heavy metals and ciliates to assess: (1) the sensitivity of freshwater ciliates to different heavy metals, (2) the relative sensitivity of ciliates in comparison to the standard test species used in ecotoxicological risk assessment, and (3) the difference in sensitivity across ciliate taxa. Our study shows that the tolerance of ciliates to heavy metals varies notably, which is partly influenced by differences in methodological conditions across studies. Ciliates are, in general, sensitive to Mercury > Cadmium > Copper > Zinc > Lead > Chromium. Also, this study shows that most ciliates are more tolerant to heavy metal pollution than the standard test species used in ecotoxicological risk assessments, i.e., Raphidocelis subcapitata, Daphnia magna, and Onchornyncus mykiss. Threshold concentrations derived from toxicity data for these species is expected to confer sufficient protection for the vast majority of ciliate species. Our data analysis also shows that the most commonly tested ciliate species, Paramecium caudatum and Tetrahymena thermophila, are not necessarily the most sensitive ones to heavy metal pollution. Finally, this study stresses the importance of developing standard toxicity test protocols for ciliates, which could lead to a better comprehension of the toxicological impact of heavy metals and other contaminants to ciliate species.


Assuntos
Cilióforos/efeitos dos fármacos , Ecotoxicologia/métodos , Água Doce/química , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Metais Pesados/análise , Medição de Risco , Testes de Toxicidade , Poluentes Químicos da Água/análise
10.
Ecotoxicol Environ Saf ; 148: 228-236, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29055776

RESUMO

Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and species competition may affect the sensitivity of the cyanobacterium Microcystis aeruginosa and the green-algae Scenedesmus obliquus to the antibiotic enrofloxacin. First, we performed single-species tests to assess the toxicity of enrofloxacin under different temperature conditions (20°C and 30°C) and to assess the sensitivity of different species strains using a standard temperature (20°C). Next, we investigated how enrofloxacin contamination may affect the competition between M. aeruginosa and S. obliquus. A competition experiment was performed following a full factorial design with different competition treatments, defined as density ratios (i.e. initial bio-volume of 25/75%, 10/90% and 1/99% of S. obliquus/M. aeruginosa, respectively), one 100% S. obliquus treatment and one 100% M. aeruginosa treatment, and four different enrofloxacin concentrations (i.e. control, 0.01, 0.05 and 0.10mg/L). Growth inhibition based on cell number, bio-volume, chlorophyll-a concentration as well as photosynthetic activity were used as evaluation endpoints in the single-species tests, while growth inhibition based on measured chlorophyll-a was primarily used in the competition experiment. M. aeruginosa photosynthetic activity was found to be the most sensitive endpoint to enrofloxacin (EC50-72h =0.02mg/L), followed by growth inhibition based on cell number. S. obliquus was found to be slightly more sensitive at 20°C than at 30°C (EC50-72h cell number growth inhibition of 38 and 41mg/L, respectively), whereas an opposite trend was observed for M. aeruginosa (0.047 and 0.037mg/L, respectively). Differences in EC50-72h values between algal strains of the same species were within a factor of two. The competition experiment showed that M. aeruginosa growth can be significantly reduced in the presence of S. obliquus at a density ratio of 75/25% M. aeruginosa/S. obliquus, showing a higher susceptibility to enrofloxacin than in the single-species test. The results of this study confirm the high sensitivity of cyanobacteria to antibiotics and show that temperature and inter-strain genetic variation may have a limited influence on their response to them. The results of the competition experiment suggest that the structure of primary producer communities can be affected, at least temporarily, at antibiotic concentrations close to those that have been measured in the environment.


Assuntos
Antibacterianos/toxicidade , Fluoroquinolonas/toxicidade , Variação Genética , Microcystis/efeitos dos fármacos , Scenedesmus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Clorofila/análise , Clorofila A , Relação Dose-Resposta a Droga , Ecossistema , Enrofloxacina , Microcystis/genética , Fotossíntese/efeitos dos fármacos , Scenedesmus/genética , Especificidade da Espécie , Temperatura
11.
Ecotoxicol Environ Saf ; 127: 222-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26874341

RESUMO

The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities (cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida (LC50=2mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance response at soil concentrations that are close to those predicted in rice-fields and in surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50=28mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 values above 100mg/kg d.w.). For these pesticides, however, weight loss was identified as a sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated LC10 values. The investigated effects on the enzymatic activities of E. fetida and the observed histopathological alterations (longitudinal and circular muscle lesions, edematous tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor pesticide contamination and are proposed as alternative measures to evaluate pesticide risks on agro-ecosystems.


Assuntos
Inseticidas/toxicidade , Oligoquetos/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes do Solo/toxicidade , Agricultura , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Colinesterases/metabolismo , Inseticidas/farmacologia , Lactato Desidrogenases/metabolismo
12.
Environ Sci Technol ; 49(24): 14176-83, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26512735

RESUMO

We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources.


Assuntos
Aquicultura/métodos , Meio Ambiente , Ração Animal , Animais , Bangladesh , Peixes-Gato , China , Crustáceos , Eutrofização , Aquecimento Global , Método de Monte Carlo , Praguicidas , Tailândia , Tilápia , Vietnã
13.
Ecotoxicol Environ Saf ; 120: 27-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26024811

RESUMO

The Ecological Risk Assessment of pesticides and other potentially toxic chemicals is generally based on toxicity data obtained from single-species laboratory experiments. In the field, however, contaminant effects are ubiquitously co-occurring with ecological interactions such as species competition and predation, which might influence the sensitivity of the individuals exposed to toxicants. The present experimental study investigated how intra- and interspecific competition influence the response of sensitive aquatic organisms to a pesticide. For this, the effects of the fungicide carbendazim were assessed on the mortality and growth of the snail Bithynia tentaculata and the crustacean Gammarus pulex under different levels of intraspecific and interspecific competition for a food resource. Interspecific competition was created by adding individuals of Radix peregra and Asellus aquaticus, respectively. The interaction of competition and carbendazim exposure significantly influenced B. tentaculata growth, however, combined effects on survival and immobility were considered transient and were less easily demonstrated. Positive influence of competition on G. pulex survival was observed under low-medium carbendazim concentrations and under medium-high density pressures, being partly related to cannibalistic and predation compensatory mechanisms, enhanced under food limiting conditions. This study shows that intra- and interspecific competition pressure may influence the response of sensitive aquatic organisms in a more complex way (positive, non-significant and negative effects were observed) than just increasing the sensitivity of the studied species, as has generally been hypothesized.


Assuntos
Anfípodes/efeitos dos fármacos , Benzimidazóis/toxicidade , Carbamatos/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Isópodes/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Comportamento Competitivo/fisiologia , Ecossistema , Caramujos/metabolismo
14.
Ecotoxicology ; 24(6): 1362-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119660

RESUMO

The ecological risk assessment of pesticides is generally based on toxicity data obtained from single-species laboratory experiments and does not take into account ecological interactions such as competition or predation. Intraspecific and interspecific competition are expected to result in additional stress and might increase the sensitivity of aquatic populations to pesticide contamination. To test this hypothesis, the effects of the fungicide carbendazim were assessed on the population dynamics of the micro-crustacean Daphnia magna under different levels of intraspecific and interspecific competition for an algal food resource, using the rotifer Brachionus calyciflorus as competing species. The experiments were performed in glass jars with three different carbendazim concentrations (i.e., 50, 100 and 150 µg/L), and had a duration of 25 days, with a 4-day pre-treatment period in which competition was allowed to take place and a 21-day exposure period. The endpoints evaluated were D. magna total population abundance and population structure. Results of these experiments show that competition stress on its own had a significant influence on shaping D. magna population's structure, however, a different response was observed in the intraspecific and interspecific competition experiments. The use of a 4-day pre-treatment period in the intraspecific experiment already led to an absence of interactive effects due to the quick abundance confluence between the different intraspecific treatments, thus not allowing the observation of interactive effects between competition and carbendazim stress. Results of the interspecific competition experiment showed that rotifers were quickly outcompeted by D. magna and that D. magna even profited from the rotifer presence through exploitative competition, which alleviated the original stress caused by the algal resource limitation. These experiments suggest that competition interactions play an important role in defining population-level effects of pesticides in a more complex way than was hypothesized ("increasing competition leading to a sensitivity increase"), as the interspecific experiment showed. Therefore, these should be taken into account in the extrapolation of single-species toxicity data to protect higher levels of biological organization.


Assuntos
Benzimidazóis/toxicidade , Carbamatos/toxicidade , Daphnia/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Comportamento Competitivo , Ecossistema , Comportamento Alimentar , Densidade Demográfica
15.
Aquat Toxicol ; 268: 106866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382184

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) have raised international concerns due to their widespread use, environmental persistence and potential bioaccumulative and ecotoxicological effects. Therefore, the chemical industry has been dedicated to develop new generation fluorosurfactants which are aimed to replace the most concerning PFAS. Here we investigated the fate and effects of cyclic C6O4 (cC6O4), a compound used as alternative to long-chain perfluorocarboxylic acids, in freshwater mesocosms located in the Mediterranean region (Spain) over a period of 90 days. cC6O4 was applied as ammonium salt once at the following nominal concentrations: 0 µg/L (control), 1 µg/L, 20 µg/L, 400 µg/L, and 8,000 µg/L. The study shows that cC6O4 is relatively persistent in water (dissipation: 34-37 % after 90 days), has very low sorption capacity to sediments (sediment-water partition coefficient: 0.18-0.32 L/kg) and very limited bioconcentration (BCF: 0.09-0.94), bioaccumulation (BAF: 0.09-4.06) and biomagnification (BMF: 0.05-0.28) potential. cC6O4 did not result in significant adverse effects on aquatic populations and communities of phytoplankton and zooplankton at the tested concentrations. As for the macroinvertebrate community, the ephemeropteran Cloeon sp. showed a population decline at the highest test concentration on day 60 onwards, and a significant effect on the macroinvertebrate community was identified on the last sampling day at the same exposure level. Therefore, the calculated NOEC for cC6O4 in freshwater mesocosms exposed over a period of 90 days was 400 µg/L, which corresponded to a time weighted average concentration of 611 µg/L, given the water evaporation in the test systems. This concentration is about an order of magnitude higher than the highest exposure concentration monitored in freshwater ecosystems. Therefore, it can be concluded that cC6O4 poses insignificant ecological risks for freshwater plankton and macroinvertebrate communities given the current environmental exposure levels.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Zooplâncton , Água Doce/química , Água/farmacologia
16.
Chemosphere ; 346: 140587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918528

RESUMO

Antibiotic residues can reach aquatic ecosystems through urban wastewater discharges, posing an ecotoxicological risk for aquatic organisms and favoring the development of bacterial resistance. To assess the emission rate and hazardousness of these compounds, it is important to carry out periodic chemical monitoring campaigns that provide information regarding the actual performance of wastewater treatment plants (WWTPs) and the potential impact of the treated wastewater in the aquatic environment. In this study, 18 of the most widely consumed antibiotics in Spain were determined by liquid chromatography-tandem mass spectrometry in both influent (IWW) and effluent wastewater (EWW) samples collected over four seasons along 2021-2022. Eleven antibiotics were detected in EWW with azithromycin, ciprofloxacin and levofloxacin showing the highest concentration levels (around 2 µg L-1 of azithromycin and 0.4 µg L-1 of quinolone compounds). Data showed that only 4 out of the 11 compounds were removed by more than 50 % in the WWTP, with sulfamethoxazole standing out with an average removal efficiency >80 %. The risk that treated water could pose to the aquatic environment was also assessed, with 6 compounds indicating a potential environmental risk by exceeding established ecotoxicological and resistance thresholds. Based on the risk assessment, the WWTP removal efficiency required to reduce such risk for antibiotics was estimated. In addition, pooled wastewater samples were screened by LC coupled to high resolution mass spectrometry with ion mobility separation, searching for metabolites and transformation products of the antibiotics investigated to widen future research. Studies like this are crucial to map the impact of antibiotic pollution and to provide the basis for designing water quality and risk prevention monitoring programs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Antibacterianos/análise , Azitromicina , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem
17.
Environ Pollut ; 357: 124459, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942275

RESUMO

Imidacloprid is a neonicotinoid insecticide that has received particular attention due to its widespread use and potential adverse effects for aquatic and terrestrial ecosystems. Its toxicity to aquatic organisms has been evaluated in central and southern Europe as well as in (sub-)tropical regions of Africa and Asia, showing high toxic potential for some aquatic insects and zooplankton taxa. However, its toxicity to aquatic organisms representative of tropical regions of Latin America has never been evaluated. To fill this knowledge gap, we carried out a mesocosm experiment to assess the short- and long-term effects of imidacloprid on freshwater invertebrate communities representative of the Ecuadorian Amazon. A mesocosm experiment was conducted with five weekly applications of imidacloprid at four nominal concentrations (0.01 µg/L, 0.1 µg/L, 1 µg/L and 10 µg/L). Toxic effects were evaluated on zooplankton and macroinvertebrate populations and communities, as well as on water quality parameters for 70 days. Given the climatic conditions prevailing in the study area, characterized by a high solar radiation and abundant rainfall that resulted in mesocosm overflow, there was a rapid dissipation of the test compound from the water column (half-life: 4 days). The macroinvertebrate taxa Callibaetis pictus (Ephemeroptera), Chironomus sp. (Diptera), and the zooplankton taxon Macrocyclops sp., showed population declines caused by the imidacloprid treatment, with a 21-d Time Weighted Average No Observed Effect Concentrations (21-d TWA NOEC) of 0.46 µg/L, except for C. pictus which presented a 21-d TWA NOEC of 0.05 µg/L. In general terms, the sensitivity of these taxa to imidacloprid was greater than that reported for surrogate taxa in temperate zones and similar to that reported in other (sub-)tropical regions. These results confirm the high sensitivity of tropical aquatic invertebrates to this compound and suggest the need to establish regulations for the control of imidacloprid contamination in Amazonian freshwater ecosystems.

18.
Environ Sci Pollut Res Int ; 31(10): 14593-14609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277107

RESUMO

Pharmaceuticals and pesticides can be considered hazardous compounds for Mediterranean coastal wetland ecosystems. Although many of these compounds co-occur in environmental samples, only a few studies have been dedicated to assessing the ecotoxicological risks of complex contaminant mixtures. We evaluated the occurrence of 133 pharmaceuticals and pesticides in 12 sites in a protected Mediterranean wetland, the Albufera Natural Park (ANP), based on conventional grab sampling and polar organic chemical integrative samplers (POCIS). We assessed acute and chronic ecological risks posed by these contaminant mixtures using the multi-substance Potentially Affected Fraction (msPAF) approach and investigated the capacity of a constructed wetland to reduce chemical exposure and risks. This study shows that pharmaceuticals and pesticides are widespread contaminants in the ANP, with samples containing up to 75 different compounds. POCIS samplers were found to be useful for the determination of less predictable exposure profiles of pesticides occurring at the end of the rice cultivation cycle, while POCIS and grab samples provide an accurate method to determine (semi-)continuous pharmaceutical exposure. Acute risks were identified in one sample, while chronic risks were determined in most of the collected samples, with 5-25% of aquatic species being potentially affected. The compounds that contributed to the chronic risks were azoxystrobin, ibuprofen, furosemide, caffeine, and some insecticides (diazinon, imidacloprid, and acetamiprid). The evaluated constructed wetland reduced contaminant loads by 45-73% and reduced the faction of species affected from 25 to 6%. Our study highlights the need of addressing contaminant mixture effects in Mediterranean wetlands and supports the use of constructed wetlands to reduce contaminant loads and risks in areas with high anthropogenic pressure.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Áreas Alagadas , Ecossistema , Monitoramento Ambiental/métodos , Compostos Orgânicos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 467: 133732, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350316

RESUMO

The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.

20.
Environ Toxicol Chem ; 43(1): 182-196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750580

RESUMO

Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assessments (ERAs), because they can better account for uncertainty compared with the simpler approaches commonly used in traditional ERA. We used BNs as metamodels to link various sources of information in a probabilistic framework, to predict the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding the Albufera Natural Park (Valencia, Spain), and considered three selected pesticides: acetamiprid (an insecticide), 2-methyl-4-chlorophenoxyacetic acid (MCPA; a herbicide), and azoxystrobin (a fungicide). The developed BN linked the inputs and outputs of two pesticide models: a process-based exposure model (Rice Water Quality [RICEWQ]), and a probabilistic effects model (Predicts the Ecological Risk of Pesticides [PERPEST]) using case-based reasoning with data from microcosm and mesocosm experiments. The model characterized risk at three levels in a hierarchy: biological endpoints (e.g., molluscs, zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community. The pesticide risk to a biological endpoint was characterized as the probability of an effect for a given pesticide concentration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the group. Likewise, community-level risk was calculated as the joint probability of any of the endpoint groups being affected. This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for the year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to invertebrates (36% risk). In contrast, herbicide-related risk to the community (63%) resulted from risk to both plants (35%) and invertebrates (38%); the latter might represent (in the present study) indirect effects of toxicity through the food chain. This novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different components of aquatic ecosystems. Environ Toxicol Chem 2024;43:182-196. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Inseticidas , Oryza , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Inseticidas/toxicidade , Ecossistema , Teorema de Bayes , Invertebrados , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA