RESUMO
PLK1 is overexpressed in acute myeloid leukemia (AML). A phase 1b trial of the PLK1 inhibitor onvansertib (ONV) combined with decitabine (DAC) demonstrated initial safety and efficacy in patients with relapsed/refractory (R/R) AML. The current study aimed to identify molecular predictors of response to ONV + DAC in R/R AML patients. A total of 44 R/R AML patients were treated with ONV + DAC and considered evaluable for efficacy. Bone marrow (BM) samples were collected at baseline for genomic and transcriptomic analysis (n = 32). A 10-gene expression signature, predictive of response to ONV + DAC, was derived from the leading-edge genes of gene set enrichment analyses (GSEA). The gene signature was evaluated in independent datasets and used to identify associated mutated genes. Twenty percent of the patients achieved complete remission, with or without hematologic count recovery (CR/CRi), and 32% exhibited a ≥50% reduction in bone marrow blasts. Patients who responded to treatment had elevated mitochondrial function and OXPHOS. The gene signature was not associated with response to DAC alone in an independent dataset. By applying the signature to the BeatAML cohort (n = 399), we identified a positive association between predicted ONV + DAC response and mutations in splicing factors (SF). In the phase 1b/2 trial, patients with SF mutations (SRSF2, SF3B1) had a higher CR/CRi rate (50%) compared to those without SF mutations (9%). PLK1 inhibition with ONV in combination with DAC could be a potential therapy in R/R AML patients, particularly those with high OXPHOS gene expression and SF mutations.
Assuntos
Leucemia Mieloide Aguda , Piperazinas , Pirazóis , Quinazolinas , Spliceossomos , Humanos , Decitabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Protocolos de Quimioterapia Combinada AntineoplásicaRESUMO
BACKGROUND: Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the preferred first-line treatment for hormone receptor-positive (HR+)/HER2- metastatic breast cancer. Although this is beneficial, acquired resistance leads to disease progression, and patients harboring PIK3CA mutations are treated with targeted therapies such as the PI3Kα inhibitor, alpelisib, alongside ET. Drug-associated resistance mechanisms limit the efficacy of alpelisib, highlighting the need for better combination therapies. This study aimed to evaluate the efficacy of combining alpelisib with a highly specific PLK1 inhibitor, onvansertib, in PIK3CA-mutant HR+ breast cancer preclinical models. METHODS: We assessed the effect of the alpelisib and onvansertib combination on cell viability, PI3K signaling pathway, cell cycle phase distribution and apoptosis in PI3K-activated HR+ breast cancer cell lines. The antitumor activity of the combination was evaluated in three PIK3CA-mutant HR+ breast cancer patient-derived xenograft (PDX) models, resistant to ET and CDK4/6 inhibitor palbociclib. Pharmacodynamics studies were performed using immunohistochemistry and Simple Western analyses in tumor tissues. RESULTS: The combination synergistically inhibited cell viability, suppressed PI3K signaling, induced G2/M arrest and apoptosis in PI3K-activated cell lines. In the three PDX models, the combination demonstrated superior anti-tumor activity compared to the single agents. Pharmacodynamic studies confirmed the inhibition of both PLK1 and PI3K activity and pronounced apoptosis in the combination-treated tumors. CONCLUSIONS: Our findings support that targeting PLK1 and PI3Kα with onvansertib and alpelisib, respectively, may be a promising strategy for patients with PIK3CA-mutant HR+ breast cancer failing ET + CDK4/6i therapies and warrant clinical evaluation.
RESUMO
Polo-like kinase 1 (PLK1) inhibitors have had limited antitumor efficacy as single agents, and focus of current efforts is on combination therapies. We initially confirmed that the PLK1-specific inhibitor onvansertib (ONV) could enhance responses to a PARP inhibitor (olaparib) in prostate cancer xenografts. To identify more effective combinations, we screened a library of bioactive compounds for efficacy in combination with ONV in LNCaP prostate cancer cells, which identified a series of compounds including multiple AKT inhibitors. We confirmed in vitro synergy between ONV and the AKT inhibitor ipatasertib (IPA) and found that the combination increased apoptosis. Mechanistic studies showed that ONV increased expression of the antiapoptotic protein SURVIVIN and that this was mitigated by IPA. Studies in three PTEN-deficient prostate cancer xenograft models showed that cotreatment with IPA and ONV led to significant tumor growth inhibition compared with monotherapies. Together, these in vitro and in vivo studies demonstrate that the efficacy of PLK1 antagonists can be enhanced by PARP or AKT inhibition and support further development of these combination therapies.
Assuntos
Proteínas de Ciclo Celular , Quinase 1 Polo-Like , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Masculino , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sinergismo Farmacológico , Pteridinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Piperazinas , PirimidinasRESUMO
PURPOSE: Onvansertib is a highly specific inhibitor of polo-like kinase 1 (PLK1), with demonstrated safety in solid tumors. We evaluated, preclinically and clinically, the potential of onvansertib in combination with chemotherapy as a therapeutic option for KRAS-mutant colorectal cancer. PATIENTS AND METHODS: Preclinical activity of onvansertib was assessed (i) in vitro in KRAS wild-type and -mutant isogenic colorectal cancer cells and (ii) in vivo, in combination with irinotecan, in a KRAS-mutant xenograft model. Clinically, a phase Ib trial was conducted to investigate onvansertib at doses 12, 15, and 18 mg/m2 (days 1-5 and 14-19 of a 28-day cycle) in combination with FOLFIRI/bevacizumab (days 1 and 15) in patients with KRAS-mutant metastatic colorectal cancer who had prior oxaliplatin exposure. Safety, efficacy, and changes in circulating tumor DNA (ctDNA) were assessed. RESULTS: In preclinical models, onvansertib displayed superior activity in KRAS-mutant than wild-type isogenic colorectal cancer cells and demonstrated potent antitumor activity in combination with irinotecan in vivo. Eighteen patients enrolled in the phase Ib study. Onvansertib recommended phase II dose was established at 15 mg/m2. Grade 3 and 4 adverse events (AE) represented 15% of all treatment-related AEs, with neutropenia being the most common. Partial responses were observed in 44% of patients, with a median duration of response of 9.5 months. Early ctDNA dynamics were predictive of treatment efficacy. CONCLUSIONS: Onvansertib combined with FOLIFRI/bevacizumab exhibited manageable safety and promising efficacy in second-line treatment of patients with KRAS-mutant metastatic colorectal cancer. Further exploration of this combination therapy is ongoing. See related commentary by Stebbing and Bullock, p. 2005.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Camptotecina , Neoplasias Colorretais , Fluoruracila , Leucovorina , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Bevacizumab/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Leucovorina/administração & dosagem , Proteínas Proto-Oncogênicas p21(ras)/genética , Camptotecina/análogos & derivados , Camptotecina/administração & dosagem , Camptotecina/uso terapêutico , Feminino , Masculino , Fluoruracila/administração & dosagem , Pessoa de Meia-Idade , Animais , Idoso , Camundongos , Adulto , Linhagem Celular Tumoral , Metástase Neoplásica , Resultado do Tratamento , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidoresRESUMO
PURPOSE: This phase II study evaluated the efficacy and tolerability of onvansertib, a polo-like kinase 1 (PLK1) inhibitor, in combination with fluorouracil, leucovorin, and irinotecan (FOLFIRI) + bevacizumab for the second-line treatment of KRAS-mutant metastatic colorectal cancer (mCRC). PATIENTS AND METHODS: This multicenter, open-label, single-arm study enrolled patients with KRAS-mutated mCRC previously treated with oxaliplatin and fluorouracil with or without bevacizumab. Patients received onvansertib (15 mg/m2 once daily on days 1-5 and 15-19 of a 28-day cycle) and FOLFIRI + bevacizumab (days 1 and 15). The primary end point was the objective response rate (ORR), and secondary endpoints included progression-free survival (PFS), duration of response (DOR), and tolerability. Translational and preclinical studies were conducted in KRAS-mutant CRC. RESULTS: Among the 53 patients treated, the confirmed ORR was 26.4% (95% CI, 15.3 to 40.3). The median DOR was 11.7 months (95% CI, 9.4 to not reached). Grade 3/4 adverse events were reported in 62% of patients. A post hoc analysis revealed that patients with no prior bevacizumab treatment had a significantly higher ORR and longer PFS compared with patients with prior bevacizumab treatment: ORR of 76.9% versus 10.0% (odds ratio of 30.0, P < .001) and median PFS of 14.9 months versus 6.6 months (hazard ratio of 0.16, P < .001). Our translational findings support that prior bevacizumab exposure contributes to onvansertib resistance. Preclinically, we showed that onvansertib inhibited the hypoxia pathway and exhibited robust antitumor activity in combination with bevacizumab through the inhibition of angiogenesis. CONCLUSION: Onvansertib in combination with FOLFIRI + bevacizumab showed significant activity in the second-line treatment of patients with KRAS-mutant mCRC, particularly in patients with no prior bevacizumab treatment. These findings led to the evaluation of the combination in the first-line setting (ClinicalTrails.gov identifier: NCT06106308).
RESUMO
Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Feminino , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/farmacologia , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Linhagem Celular Tumoral , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacosRESUMO
Abiraterone is a standard treatment for metastatic castrate-resistant prostate cancer (mCRPC) that slows disease progression by abrogating androgen synthesis and antagonizing the androgen receptor (AR). Here we report that inhibitors of the mitotic regulator polo-like kinase-1 (Plk1), including the clinically active third-generation Plk1 inhibitor onvansertib, synergizes with abiraterone in vitro and in vivo to kill a subset of cancer cells from a wide variety of tumor types in an androgen-independent manner. Gene-expression analysis identified an AR-independent synergy-specific gene set signature upregulated upon abiraterone treatment that is dominated by pathways related to mitosis and the mitotic spindle. Abiraterone treatment alone caused defects in mitotic spindle orientation, failure of complete chromosome condensation, and improper cell division independently of its effects on AR signaling. These effects, although mild following abiraterone monotherapy, resulted in profound sensitization to the antimitotic effects of Plk1 inhibition, leading to spindle assembly checkpoint-dependent mitotic cancer cell death and entosis. In a murine patient-derived xenograft model of abiraterone-resistant metastatic castration-resistant prostate cancer (mCRPC), combined onvansertib and abiraterone resulted in enhanced mitotic arrest and dramatic inhibition of tumor cell growth compared with either agent alone. Overall, this work establishes a mechanistic basis for the phase II clinical trial (NCT03414034) testing combined onvansertib and abiraterone in mCRPC patients and indicates this combination may have broad utility for cancer treatment. SIGNIFICANCE: Abiraterone treatment induces mitotic defects that sensitize cancer cells to Plk1 inhibition, revealing an AR-independent mechanism for this synergistic combination that is applicable to a variety of cancer types.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Androgênios , MitoseRESUMO
Background: Ovarian carcinoma is extremely sensitive to (platinum-based) chemotherapy; however, most patients will relapse with platinum-resistant disease, badly affecting their prognosis. Effective therapies for relapsing resistant tumors are urgently needed. Methods: We used patient-derived xenografts (PDXs) of ovarian carcinoma resistant to cisplatin (DDP) to test in vivo the combination of paclitaxel (15 mg/kg i.v. once a week for 3 weeks) and onvansertib, a plk1 inhibitor, (50 mg/kg orally 4 days a week for 3 weeks). The PDX models were subcutaneously (s.c.) or orthotopically transplanted in nude mice and antitumor efficacy was evaluated as tumor growth inhibition and survival advantages of the combination over untreated and single agent treatment. Results: The combination of onvansertib and paclitaxel was very well tolerated with weight loss no greater than 15% in the combination group compared with the control group. In the orthotopically transplanted PDXs, single onvansertib and paclitaxel treatments prolonged survival; however, the combined treatment was much more active, with median survival from three- to six-fold times that of untreated mice. Findings were similar with the s.c. transplanted PDX, though there was greater heterogeneity in tumor response. Ex vivo tumors treated with the combination showed greater induction of γH2AX, marker of apoptosis and DNA damage, and pSer10H3, a marker of mitotic block. Conclusion: The efficacy of onvansertib and paclitaxel combination in these preclinical ovarian cancer models supports the clinical translatability of this combination as an effective therapeutic approach for platinum-resistant high-grade ovarian carcinoma.
RESUMO
BACKGROUND: Group 3 medulloblastoma (MB) is often accompanied by MYC amplification. PLK1 is an oncogenic kinase that controls cell cycle and proliferation and has been preclinically validated as a cancer therapeutic target. Onvansertib (PCM-075) is a novel, orally available PLK1 inhibitor, which shows tumor growth inhibition in various types of cancer. We aim to explore the effect of onvansertib on MYC-driven medulloblastoma as a monotherapy or in combination with radiation. METHODS: Crisper-Cas9 screen was used to discover essential genes for MB tumor growth. Microarray and immunohistochemistry on pediatric patient samples were performed to examine the expression of PLK1. The effect of onvansertib in vitro was measure by cell viability, colony-forming assays, extreme limiting dilution assay, and RNA-Seq. ALDH activity, cell-cycle distribution, and apoptosis were analyzed by flow cytometry. DNA damage was assessed by immunofluorescence staining. Medulloblastoma xenografts were generated to explore the monotherapy or radio-sensitizing effect. RESULTS: PLK1 is overexpressed in Group 3 MB. The IC50 concentrations of onvansertib in Group 3 MB cell lines were in a low nanomolar range. Onvansertib reduced colony formation, cell proliferation, stem cell renewal and induced G2/M arrest in vitro. Moreover, onvansertib in combination with radiation increased DNA damage and apoptosis compared with radiation treatment alone. The combination radiotherapy resulted in marked tumor regression in xenografts. CONCLUSIONS: These findings demonstrate the efficacy of a novel PLK1 inhibitor onvansertib in vitro and in xenografts of Group 3 MB, which suggests onvansertib is an effective strategy as monotherapy or in combination with radiotherapy in MB.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/patologia , Criança , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Meduloblastoma/radioterapia , Piperazinas , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis , QuinazolinasRESUMO
Prostate smooth muscle contraction and prostate enlargement contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Recent evidence demonstrated that inhibitors for polo-like kinases (PLKs) inhibit smooth muscle contraction of human prostate tissues. However, their additive effects to α1-blockers, and effects on prostate growth are unknown. Here, we examined effects of a novel and highly selective PLK1 inhibitor, onvansertib on prostate smooth muscle contraction alone and in combination with α1-blockers, and on proliferation and viability of prostate stromal cells (WPMY-1). Prostate tissues were obtained from radical prostatectomy. Contractions were studied in an organ bath. Proliferation and viability were assessed by plate colony, EdU, and CCK-8 assay. Electric field stimulation (EFS)-induced contractions of human prostate tissues were inhibited to 34% by 100 nM and 1 µM onvansertib at 32 Hz, and to 48% and 47% by the α1-blockers tamsulosin and silodosin. Combination of onvansertib with tamsulosin or silodosin further reduced EFS-induced contractions in comparison to α1-blockers alone (59% and 61% respectively), and to onvansertib alone (68% for both). Noradrenaline-, phenylephrine-, methoxamine-, endothelin-1-, and ATP-induced contractions were inhibited by onvansertib (100 nM) to similar extent. Viability and proliferation of WPMY-1 cells were reduced in a concentration- and time-dependent manner (24-72 h, 10-100 nM). Onvansertib inhibits neurogenic, adrenergic, and endothelin-1- and ATP-induced contractions of human prostate smooth muscle, and proliferation of stromal cells. Contractions are reduced not more than 50% by α1-blockers. Combination of α1-blockers with onvansertib provides additive inhibition of prostate contractions.
Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Músculo Liso/efeitos dos fármacos , Piperazinas/farmacologia , Próstata/citologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinazolinas/farmacologia , Células Estromais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Humanos , Técnicas In Vitro , Masculino , Contração Muscular/efeitos dos fármacos , Próstata/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Quinase 1 Polo-LikeRESUMO
PURPOSE: The Polo-like kinase 1 (PLK1) is a master regulator of mitosis and overexpressed in acute myeloid leukemia (AML). We conducted a phase Ib study of the PLK1 inhibitor, onvansertib, in combination with either low-dose cytarabine (LDAC) or decitabine in patients with relapsed or refractory (R/R) AML. PATIENTS AND METHODS: Onvansertib was administered orally, in escalating doses, on days 1-5 in combination with either LDAC (20 mg/m2; days 1-10) or decitabine (20 mg/m2; days 1-5) in a 28-day cycle. The primary endpoint was to evaluate first-cycle dose-limiting toxicities and the MTD. Secondary and exploratory endpoints included safety, pharmacokinetics, antileukemic activity, and response biomarkers. RESULTS: Forty patients were treated with onvansertib (12-90 mg/m2) in combination with LDAC (n = 17) or decitabine (n = 23). Onvansertib was well tolerated with most grades 3 and 4 adverse events related to myelosuppression. In the decitabine arm, the MTD was established at 60 mg/m2, and 5 (24%) of the 21 evaluable patients achieved complete remission with or without hematologic count recovery. Decrease in mutant circulating tumor DNA (ctDNA) during the first cycle of therapy was associated with clinical response. Engagement of the PLK1 target, TCTP, was measured in circulating blasts and was associated with greater decrease in bone marrow blasts. CONCLUSIONS: The onvansertib and decitabine combination was well tolerated and had antileukemic activity particularly in patients with target engagement and decreased mutant ctDNA following treatment. This combination will be further investigated in the ongoing phase II trial.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Terapia de Salvação , Adulto , Idoso , Idoso de 80 Anos ou mais , Citarabina/administração & dosagem , Decitabina/administração & dosagem , Feminino , Seguimentos , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Piperazinas/administração & dosagem , Prognóstico , Pirazóis/administração & dosagem , Quinazolinas/administração & dosagemRESUMO
Within triple negative breast cancer, several molecular subtypes have been identified, underlying the heterogeneity of such an aggressive disease. The basal-like subtype is characterized by mutations in the TP53 gene, and is associated with a low pathologic complete response rate following neoadjuvant chemotherapy. In a genome-scale short hairpin RNA (shRNA) screen of breast cancer cells, polo-like kinase 1 (Plk1) was a frequent and strong hit in the basal breast cancer cell lines indicating its importance for growth and survival of these breast cancer cells. Plk1 regulates progression of cells through the G2-M phase of the cell cycle. We assessed the activity of two ATP-competitive Plk1 inhibitors, GSK461364 and onvansertib, alone and with a taxane in a set of triple negative breast cancer cell lines and in vivo. GSK461364 showed synergism with docetaxel in SUM149 (Combination Index 0.70) and SUM159 (CI, 0.62). GSK461364 in combination with docetaxel decreased the clonogenic potential (interaction test for SUM149 and SUM159, p<0.001 and p = 0.01, respectively) and the tumorsphere formation of SUM149 and SUM159 (interaction test, p = 0.01 and p< 0.001). In the SUM159 xenograft model, onvansertib plus paclitaxel significantly decreased tumor volume compared to single agent paclitaxel (p<0.0001). Inhibition of Plk1 in combination with taxanes shows promising results in a subset of triple negative breast cancer intrinsically resistant to chemotherapy. Onvansertib showed significant tumor volume shrinkage when combined with paclitaxel in vivo and should be considered in clinical trials for the treatment of triple negative cancers.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinazolinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Quinazolinas/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-LikeRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely dense fibrotic stroma, which contributes to tumor growth, metastasis, and drug resistance. During tumorigenesis, quiescent pancreatic stellate cells (PSCs) are activated and become major contributors to fibrosis, by increasing growth factor signaling and extracellular matrix deposition. The p53 tumor suppressor is known to restrict tumor initiation and progression through cell autonomous mechanisms including apoptosis, cell cycle arrest, and senescence. There is growing evidence that stromal p53 also exerts anti-tumor activity by paracrine mechanisms, though a role for stromal p53 in PDAC has not yet been described. Here, we demonstrate that activation of stromal p53 exerts anti-tumor effects in PDAC. We show that primary cancer-associated PSCs (caPSCs) isolated from human PDAC express wild-type p53, which can be activated by the Mdm2 antagonist Nutlin-3a. Our work reveals that p53 acts as a major regulator of PSC activation and as a modulator of PDAC fibrosis. In vitro, p53 activation by Nutlin-3a induces profound transcriptional changes, which reprogram activated PSCs to quiescence. Using immunofluorescence and lipidomics, we have also found that p53 activation induces lipid droplet accumulation in both normal and tumor-associated fibroblasts, revealing a previously undescribed role for p53 in lipid storage. In vivo, treatment of tumor-bearing mice with the clinical form of Nutlin-3a induces stromal p53 activation, reverses caPSCs activation, and decreases fibrosis. All together our work uncovers new functions for stromal p53 in PDAC.