RESUMO
Macromolecular function frequently requires that proteins change conformation into high-energy states1-4. However, methods for solving the structures of these functionally essential, lowly populated states are lacking. Here we develop a method for high-resolution structure determination of minorly populated states by coupling NMR spectroscopy-derived pseudocontact shifts5 (PCSs) with Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion6 (PCS-CPMG). Our approach additionally defines the corresponding kinetics and thermodynamics of high-energy excursions, thereby characterizing the entire free-energy landscape. Using a large set of simulated data for adenylate kinase (Adk), calmodulin and Src kinase, we find that high-energy PCSs accurately determine high-energy structures (with a root mean squared deviation of less than 3.5 angström). Applying our methodology to Adk during catalysis, we find that the high-energy excursion involves surprisingly small openings of the AMP and ATP lids. This previously unresolved high-energy structure solves a longstanding controversy about conformational interconversions that are rate-limiting for catalysis. Primed for either substrate binding or product release, the high-energy structure of Adk suggests a two-step mechanism combining conformational selection to this state, followed by an induced-fit step into a fully closed state for catalysis of the phosphoryl-transfer reaction. Unlike other methods for resolving high-energy states, such as cryo-electron microscopy and X-ray crystallography, our solution PCS-CPMG approach excels in cases involving domain rearrangements of smaller systems (less than 60 kDa) and populations as low as 0.5%, and enables the simultaneous determination of protein structure, kinetics and thermodynamics while proteins perform their function.
Assuntos
Adenilato Quinase , Adenilato Quinase/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , TermodinâmicaRESUMO
NMR chemical shift changes can report on the functional dynamics of biomacromolecules in solution with sizes >1 MDa. However, their interpretation requires chemical shift assignments to individual nuclei, which for large molecules often can only be obtained by tedious point mutations that may interfere with function. We present here an efficient pseudocontact shift NMR method to assign biomacromolecules using bound antibodies tagged with lanthanoid DOTA chelators. The stability of the antibody allows positioning the DOTA tag at many surface sites, providing triangulation of the macromolecule nuclei at distances >60 Å. The method provides complete assignments of valine and tyrosine 1H-15N resonances of the ß1-adrenergic receptor in various functional forms. The detected chemical shift changes reveal strong forces exerted onto the backbone of transmembrane helix 3 during signal transmission, which are absorbed by its electronic structure. The assignment method is applicable to any soluble biomacromolecule for which suitable complementary binders exist.