Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39060375

RESUMO

PURPOSE: Cachexia is a complex syndrome characterized by unintentional weight loss, progressive muscle wasting and loss of appetite. Anti-Fn14 antibody (mAb 002) targets the TWEAK receptor (Fn14) in murine models of cancer cachexia and can extend the lifespan of mice by restoring the body weight of mice. Here, we investigated glucose metabolic changes in murine models of cachexia via [18F]FDG PET imaging, to explore whether Fn14 plays a role in the metabolic changes that occur during cancer cachexia. METHODS: [18F]FDG PET/MRI imaging was performed in cachexia-inducing tumour models versus models that do not induce cachexia. SUVaverage was calculated for all tumours via volume of interest (VOI) analysis of PET/MRI overlay images using PMOD software. RESULTS: [18F]FDG PET imaging demonstrated increased tumour and brain uptake in cachectic versus non-cachectic tumour-bearing mice. Therapy with mAb 002 was able to reduce [18F]FDG uptake in tumours (P < 0.05, n = 3). Fn14 KO tumours did not induce body weight loss and did not show an increase in [18F]FDG tumour and brain uptake over time. In non-cachectic mice bearing Fn14 KO tumours, [18F]FDG tumour uptake was significantly lower (P < 0.01) than in cachectic mice bearing Fn14 WT counterparts. As a by-product of glucose metabolism, l-lactate production was also increased in cachexia-inducing tumours expressing Fn14. CONCLUSION: Our results demonstrate that Fn14 receptor activation is linked to glucose metabolism of cachexia-inducing tumours.

2.
Eur J Nucl Med Mol Imaging ; 51(11): 3202-3214, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730087

RESUMO

PURPOSE: ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS: ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS: The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION: [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Zircônio , Animais , Zircônio/química , Camundongos , Antígeno B7-H1/metabolismo , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Distribuição Tecidual , Humanos , Linhagem Celular Tumoral , Radioisótopos/química , Desferroxamina/química , Desferroxamina/análogos & derivados , Tomografia por Emissão de Pósitrons , Feminino , Marcação por Isótopo , Camundongos Endogâmicos BALB C , Isotiocianatos
3.
Artigo em Inglês | MEDLINE | ID: mdl-39060374

RESUMO

BACKGROUND: CI-8993 is a fully human IgG1κ monoclonal antibody (mAb) that binds specifically to immune checkpoint molecule VISTA (V-domain Ig suppressor of T-cell activation). Phase I safety has been established in patients with advanced cancer (NCT02671955). To determine the pharmacokinetics and biodistribution of CI-8993 in patients, we aimed to develop 89Zr-labelled CI-8993 and validate PET imaging and quantitation in preclinical models prior to a planned human bioimaging trial. METHODS: CI-8993 and human isotype IgG1 control were conjugated to the metal ion chelator p-isothiocyanatobenzyl-desferrioxamine (Df). Quality of conjugates were assessed by SE-HPLC, SDS-PAGE, and FACS. After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. [89Zr]Zr-Df-CI-8993 alone (1 mg/kg, 4.6 MBq) or in combination with 30 mg/kg unlabelled CI-8993, as well as isotype control [89Zr]Zr-Df-IgG1 (1 mg/kg, 4.6 MBq) were assessed in human VISTA knock-in female (C57BL/6 N-Vsirtm1.1(VSIR)Geno, huVISTA KI) or control C57BL/6 mice bearing syngeneic MB49 bladder cancer tumours; and in BALB/c nu/nu mice bearing pancreatic Capan-2 tumours. RESULTS: Stable constructs with an average chelator-to-antibody ratio of 1.81 were achieved. SDS-PAGE and SE-HPLC showed integrity of CI-8993 was maintained after conjugation; and ELISA indicated no impact of conjugation and radiolabelling on binding to human VISTA. PET imaging and biodistribution in MB49 tumour-bearing huVISTA KI female mice showed specific localisation of [89Zr]Zr-Df-CI-8993 to VISTA in spleen and tumour tissues expressing human VISTA. Specific tumour uptake was also demonstrated in Capan-2 xenografted BALB/c nu/nu mice. CONCLUSIONS: We radiolabelled and validated [89Zr]Zr-Df-CI-8993 for specific binding to huVISTA in vivo. Our results demonstrate that 89Zr-labelled CI-8993 is now suitable for targeting and imaging VISTA expression in human trials.

4.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805892

RESUMO

Positron emission tomography is the imaging modality of choice when it comes to the high sensitivity detection of key markers of thrombosis and inflammation, such as activated platelets. We, previously, generated a fluorine-18 labelled single-chain antibody (scFv) against ligand-induced binding sites (LIBS) on activated platelets, binding it to the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. We used a non-site-specific bio conjugation approach with N-succinimidyl-4-[18F]fluorobenzoate (S[18F]FB), leading to a mixture of products with reduced antigen binding. In the present study, we have developed and characterised a novel fluorine-18 PET radiotracer, based on this antibody, using site-specific bio conjugation to engineer cysteine residues with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). ScFvanti-LIBS and control antibody mut-scFv, with engineered C-terminal cysteine, were reduced, and then, they reacted with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). Radiolabelled scFv was injected into mice with FeCl3-induced thrombus in the left carotid artery. Clots were imaged in a PET MR imaging system, and the amount of radioactivity in major organs was measured using an ionisation chamber and image analysis. Assessment of vessel injury, as well as the biodistribution of the radiolabelled scFv, was studied. In the in vivo experiments, we found uptake of the targeted tracer in the injured vessel, compared with the non-injured vessel, as well as a high uptake of both tracers in the kidney, lung, and muscle. As expected, both tracers cleared rapidly via the kidney. Surprisingly, a large quantity of both tracers was taken up by organs with a high glutathione content, such as the muscle and lung, due to the instability of the maleimide cysteine bond in vivo, which warrants further investigations. This limits the ability of the novel antibody radiotracer 18F-scFvanti-LIBS to bind to the target in vivo and, therefore, as a useful agent for the sensitive detection of activated platelets. We describe the first fluorine-18 variant of the scFvanti-LIBS against activated platelets using site-specific bio conjugation.


Assuntos
Cisteína , Trombose , Animais , Anticorpos/metabolismo , Plaquetas/metabolismo , Cisteína/metabolismo , Maleimidas/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Trombose/metabolismo , Distribuição Tecidual
5.
Eur J Nucl Med Mol Imaging ; 48(10): 3075-3088, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33608805

RESUMO

PURPOSE: Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS: Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-ß receptor II (TGF-ßRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-ßRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-ß-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS: Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-ß-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION: Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.


Assuntos
Antígeno B7-H1 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Fatores Imunológicos , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Zircônio
7.
BMC Cancer ; 19(1): 924, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521127

RESUMO

BACKGROUND: Current therapies fail to cure over a third of osteosarcoma patients and around three quarters of those with metastatic disease. "Smac mimetics" (also known as "IAP antagonists") are a new class of anti-cancer agents. Previous work revealed that cells from murine osteosarcomas were efficiently sensitized by physiologically achievable concentrations of some Smac mimetics (including GDC-0152 and LCL161) to killing by the inflammatory cytokine TNFα in vitro, but survived exposure to Smac mimetics as sole agents. METHODS: Nude mice were subcutaneously or intramuscularly implanted with luciferase-expressing murine 1029H or human KRIB osteosarcoma cells. The impacts of treatment with GDC-0152, LCL161 and/or doxorubicin were assessed by caliper measurements, bioluminescence, 18FDG-PET and MRI imaging, and by weighing resected tumors at the experimental endpoint. Metastatic burden was examined by quantitative PCR, through amplification of a region of the luciferase gene from lung DNA. ATP levels in treated and untreated osteosarcoma cells were compared to assess in vitro sensitivity. Immunophenotyping of cells within treated and untreated tumors was performed by flow cytometry, and TNFα levels in blood and tumors were measured using cytokine bead arrays. RESULTS: Treatment with GDC-0152 or LCL161 suppressed the growth of subcutaneously or intramuscularly implanted osteosarcomas. In both models, co-treatment with doxorubicin and Smac mimetics impeded average osteosarcoma growth to a greater extent than either drug alone, although these differences were not statistically significant. Co-treatments were also more toxic. Co-treatment with LCL161 and doxorubicin was particularly effective in the KRIB intramuscular model, impeding primary tumor growth and delaying or preventing metastasis. Although the Smac mimetics were effective in vivo, in vitro they only efficiently killed osteosarcoma cells when TNFα was supplied. Implanted tumors contained high levels of TNFα, produced by infiltrating immune cells. Spontaneous osteosarcomas that arose in genetically-engineered immunocompetent mice also contained abundant TNFα. CONCLUSIONS: These data imply that Smac mimetics can cooperate with TNFα secreted by tumor-associated immune cells to kill osteosarcoma cells in vivo. Smac mimetics may therefore benefit osteosarcoma patients whose tumors contain Smac mimetic-responsive cancer cells and TNFα-producing infiltrating cells.


Assuntos
Antineoplásicos/farmacologia , Cicloexanos/farmacologia , Pirróis/farmacologia , Tiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Imaging ; 152016.
Artigo em Inglês | MEDLINE | ID: mdl-27457521

RESUMO

PURPOSE: The aims of the study were to develop and evaluate a novel residualizing peptide for labeling internalizing antibodies with (124)I to support clinical development using immuno-positron emission tomography (PET). METHODS: The anti-epidermal growth factor receptor antibody ch806 was radiolabeled directly or indirectly with isotopes and various residualizing peptides. Azido-derivatized radiolabeled peptides were conjugated to dibenzylcyclooctyne-derivatized ch806 antibody via click chemistry. The radiochemical purities, antigen-expressing U87MG.de2-7 human glioblastoma cell-binding properties, and targeting of xenografts at 72 hours post injection of all radioconjugates were compared. Biodistribution of (124)I-PEG4-tptddYddtpt-ch806 and immuno-PET imaging were evaluated in tumor-bearing mice. RESULTS: Biodistribution studies using xenografts at 72 hours post injection showed that (131)I-PEG4-tptddYddtpt-ch806 tumor uptake was similar to (111)In-CHX-A″-DTPA-ch806. (125)I-PEG4-tptddyddtpt-ch806 showed a lower tumor uptake value but higher than directly labeled (125)I-ch806. (124)I-PEG4-tptddYddtpt-ch806 was produced at 23% labeling efficiency, 98% radiochemical purity, 25.9 MBq/mg specific activity, and 64% cell binding in the presence of antigen excess. Tumor uptake for (124)I-PEG4-tptddYddtpt-ch806 was similar to (111)In-CHX-A″-DTPA-ch806. High-resolution immuno-PET/magnetic resonance imaging of tumors showed good correlation with biodistribution data. CONCLUSIONS: The mixed d/l-enantiomeric peptide, dThr-dPro-dThr-dAsp-dAsp-Tyr-dAsp-dAsp-dThr-dPro-dThr, is suitable for radiolabeling antibodies with radiohalogens such as (124)I for high-resolution immuno-PET imaging of tumors and for evaluation in early-phase clinical trials.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Peptídeos/farmacocinética , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Humanos , Radioisótopos do Iodo/química , Camundongos , Transplante de Neoplasias , Peptídeos/química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tirosina
9.
J Labelled Comp Radiopharm ; 59(10): 416-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27435268

RESUMO

The significance of imaging hypoxia with the positron emission tomography ligand [(18) F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [(18) F]FMISO require a 2-h delay between tracer administration and patient scanning. Labeled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [(18) F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here, we report on the synthesis and in vitro and in vivo evaluation of a novel sulfoxide, which contains an ester moiety for hydrolysis and subsequent trapping in hypoxic cells. Non-decay corrected yields of radioactivity were 1.18 ± 0.24% (n = 27, 2.5 ± 0.5% decay corrected radiochemical yield) based on K[(18) F]F. The radiotracer did not show any defluorination and did not undergo metabolism in an in vitro assay using S9 liver fractions. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that [(18) F]1 is retained in hypoxic tumors and has similar hypoxia selectivity to [(18) F]FMISO. Because of a three times faster clearance rate than [(18) F]FMISO from normoxic tissue, [(18) F]1 has emerged as a promising new radiotracer for hypoxia imaging.


Assuntos
Radioisótopos de Flúor , Glicina/análogos & derivados , Sulfóxidos , Hipóxia Tumoral , Animais , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Glicina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Camundongos , Imagem Molecular , Radioquímica , Sulfóxidos/química
10.
Apoptosis ; 20(11): 1483-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342814

RESUMO

Fibroblast activation protein (FAP), an integral membrane serine protease, is found on fibro- and osteo-sarcoma and on myofibroblasts in epithelial carcinoma, but rarely on other adult tissue. FAP has been demonstrated to be an excellent target for tumor imaging in clinical trials, and antibodies and other FAP-targeting drugs are in development. Here we have shown that FAP overexpression increased the growth of HT1080 fibrosarcoma cells in vitro and in vivo, and found that the expression of FAP affects response to chemotherapy. When treated with doxorubicin, expression of FAP increased susceptibility to the drug. In spite of this, FAP-HT1080 cells had fewer markers of classical apoptosis than HT1080 cells and neither necrosis nor necroptosis were enhanced. However, levels of early mitochondrial and lysosomal membrane permeability markers were increased, and autophagy switched from a protective function in HT1080 cells to part of the cell death mechanism with FAP expression. Therefore, FAP may affect how the tumor responds to chemotherapeutic drugs overall, which should be considered in targeted drug development. The overexpression of FAP also alters cell signaling and responses to the environment in this cell line. This includes cell death mechanisms, changing the response of HT1080 cells to doxorubicin from classical apoptosis to an organelle membrane permeability-dependent form of cell death.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fibrossarcoma/enzimologia , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endopeptidases , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/genética , Fibrossarcoma/fisiopatologia , Gelatinases/genética , Humanos , Proteínas de Membrana/genética , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA