Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 936: 173454, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795987

RESUMO

Soil contaminants may restrict soil functions. A promising soil remediation method is amendment with biochar, which has the potential to both adsorb contaminants and improve soil health. However, effects of biochar amendment on soil-plant nitrogen (N) dynamics and N cycling microbial guilds in contaminated soils are still poorly understood. Here, a metal- and polycyclic aromatic hydrocarbon (PAH) contaminated soil was amended with either biochar (0, 3, 6 % w/w) and/or peat (0, 1.5, 3 % w/w) in a full-factorial design and sown with perennial ryegrass in an outdoor field trial. After three months, N and the stable isotopic ratio δ15N was measured in soil, roots and leaves, along with microbial responses. Aboveground grass biomass decreased by 30 % and leaf N content by 20 % with biochar, while peat alone had no effect. Peat in particular, but also biochar, stimulated the abundance of microorganisms (measured as 16S rRNA gene copy number) and basal respiration. Microbial substrate utilization (MicroResp™) was altered differentially, as peat increased respiration of all carbon sources, while for biochar, respiration of carboxylic acids increased, sugars decreased, and was unaffected for amino acids. Biochar increased the abundance of ammonia oxidizing archaea, while peat stimulated ammonia oxidizing bacteria, Nitrobacter-type nitrite oxidizers and comB-type complete ammonia oxidizers. Biochar and peat also increased nitrous oxide reducing communities (nosZI and nosZII), while peat alone or combined with biochar also increased abundance of nirK-type denitrifiers. However, biochar and peat lowered leaf δ15N by 2-4 ‰, indicating that processes causing gaseous N losses, like denitrification and ammonia volatilization, were reduced compared to the untreated contaminated soil, probably an effect of biotic N immobilization. Overall, this study shows that in addition to contaminant stabilization, amendment with biochar and peat can increase N retention while improving microbial capacity to perform important soil functions.


Assuntos
Carvão Vegetal , Microbiota , Ciclo do Nitrogênio , Nitrogênio , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solo/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Metais/metabolismo , Recuperação e Remediação Ambiental/métodos
2.
Integr Environ Assess Manag ; 20(2): 316-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37610145

RESUMO

Soils are a precious resource consistently placed under several threats and urgently in need of protection within a regulatory framework at the European level. Soils are central to the provision of environmental services as well as human existence on earth. The need to protect soil has been identified by several recent European strategies and fortunately, a specific European regulation for soil protection is on the way-the European Soil Monitoring Law (formerly: Soil Health Law). However, efforts need to ensure that the upcoming Soil Monitoring Law closes gaps between existing regulations for chemicals and acknowledges current European strategies for environmental protection and sustainability. This brief communication started from a fruitful discussion among SETAC Global Soils Interest Group members on a recent public consultation on the newly proposed Soil Monitoring Law of the European Commission and highlights critical points focusing on the chemical pollution of soils. We emphasize urgent needs such as the essential definition of a "healthy state" of soils; the implementation of a suitable set of indicators and quality standards for the description of physical, chemical, and biological states of soils; the enforcement of the "polluter-pays" principle; and the establishment of a Europe-wide monitoring program. Results from monitoring need to be fed back into regulatory frameworks, including the regulation of chemicals. Guidance documents for the risk assessment of chemicals are outdated and need to be updated. Finally, actions need to be taken to foster healthy soils, stop biodiversity decline, and ensure the functioning of ecosystem services for future generations. Integr Environ Assess Manag 2024;20:316-321. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Solo , Humanos , Biodiversidade , Poluição Ambiental , Ecotoxicologia , Medição de Risco , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA