Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 54(8): 1103-1116, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835913

RESUMO

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Assuntos
COVID-19 , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Alelos , COVID-19/genética , Hospitalização , Humanos , SARS-CoV-2/genética
2.
medRxiv ; 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34282422

RESUMO

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-λ1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1 . We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.

3.
Evolution ; 74(7): 1451-1465, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490563

RESUMO

In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a "natural experiment" presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.


Assuntos
Aclimatação/genética , Aedes/fisiologia , Evolução Biológica , Diapausa de Inseto/genética , Distribuição Animal , Animais , Região dos Apalaches , Resposta ao Choque Frio , Larva/crescimento & desenvolvimento
4.
Nat Genet ; 52(12): 1283-1293, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077916

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. Here, we report the discovery of a novel, transcriptionally independent truncated isoform of ACE2, which we designate as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In The Cancer Genome Atlas, the expression of dACE2 was enriched in squamous tumors of the respiratory, gastrointestinal and urogenital tracts. In vitro, dACE2, which lacks 356 amino-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike protein and as a carboxypeptidase. Our results suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, an inflammatory tumor microenvironment or viral co-infections is unlikely to increase the cellular entry of SARS-CoV-2 and promote infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Interferons/metabolismo , Vírus de RNA/fisiologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem Celular , Indução Enzimática , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Receptores de Coronavírus/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA