Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 27(9): 3470-80, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17325042

RESUMO

The GA-binding protein (GABP) transcription factor has been shown in vitro to regulate the expression of the neuromuscular proteins utrophin, acetylcholine esterase, and acetylcholine receptor subunits delta and epsilon through the N-box promoter motif (5'-CCGGAA-3'), but its in vivo function remains unknown. A single point mutation within the N-box of the gene encoding the acetylcholine receptor epsilon subunit has been identified in several patients suffering from postsynaptic congenital myasthenic syndrome, implicating the GA-binding protein in neuromuscular function and disease. Since conventional gene targeting results in an embryonic-lethal phenotype, we used conditional targeting to investigate the role of GABPalpha in neuromuscular junction and skeletal muscle development. The diaphragm and soleus muscles from mutant mice display alterations in morphology and distribution of acetylcholine receptor clusters at the neuromuscular junction and neurotransmission properties consistent with reduced receptor function. Furthermore, we confirmed decreased expression of the acetylcholine receptor epsilon subunit and increased expression of the gamma subunit in skeletal muscle tissues. Therefore, the GABP transcription factor aids in the structural formation and function of neuromuscular junctions by regulating the expression of postsynaptic genes.


Assuntos
Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Junção Neuromuscular/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Fator de Transcrição de Proteínas de Ligação GA/deficiência , Fator de Transcrição de Proteínas de Ligação GA/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mutação/genética , Junção Neuromuscular/citologia , Especificidade de Órgãos , Fenótipo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
2.
Mol Cell Biol ; 24(13): 5844-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15199140

RESUMO

The ETS transcription factor complex GABP consists of the GABPalpha protein, containing an ETS DNA binding domain, and an unrelated GABPbeta protein, containing a transactivation domain and nuclear localization signal. GABP has been shown in vitro to regulate the expression of nuclear genes involved in mitochondrial respiration and neuromuscular signaling. We investigated the in vivo function of GABP by generating a null mutation in the murine Gabpalpha gene. Embryos homozygous for the null Gabpalpha allele die prior to implantation, consistent with the broad expression of Gabpalpha throughout embryogenesis and in embryonic stem cells. Gabpalpha(+/-) mice demonstrated no detectable phenotype and unaltered protein levels in the panel of tissues examined. This indicates that Gabpalpha protein levels are tightly regulated to protect cells from the effects of loss of Gabp complex function. These results show that Gabpalpha function is essential and is not compensated for by other ETS transcription factors in the mouse, and they are consistent with a specific requirement for Gabp expression for the maintenance of target genes involved in essential mitochondrial cellular functions during early cleavage events of the embryo.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Desenvolvimento Embrionário e Fetal , Fatores de Transcrição/fisiologia , Fatores Etários , Animais , Proteínas de Ligação a DNA/genética , Feminino , Fator de Transcrição de Proteínas de Ligação GA , Genótipo , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Organogênese , Fenótipo , RNA Mensageiro/análise , Fatores Sexuais , Distribuição Tecidual , Fatores de Transcrição/genética
3.
J Histochem Cytochem ; 54(12): 1327-33, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16835393

RESUMO

SOX13 is a member of the SOX family of transcription factors. SOX proteins play essential roles in development, and some are associated with human genetic diseases. SOX13 maps to a multi-disease locus on chromosome 1q31-32, yet its function is unknown. Here we describe the temporal and spatial expression of SOX13 protein during mouse organogenesis. SOX13 is expressed in the three embryonic cell lineages, suggesting that it may direct various developmental processes. SOX13 is expressed in the developing central nervous system including the neural tube and the developing brain. Expression is also detected in the condensing mesenchyme and cartilage progenitor cells during endochondral bone formation in the limb as well as the somite sclerotome and its derivatives. SOX13 is also detected in the developing kidney, pancreas, and liver as well as in the visceral mesoderm of the extra-embryonic yolk sac and spongiotrophoblast layer of the placenta.


Assuntos
Autoantígenos/análise , Sistema Nervoso Central/citologia , Condrócitos/citologia , Proteínas de Grupo de Alta Mobilidade/análise , Botões de Extremidades/embriologia , Medula Espinal/citologia , Animais , Autoantígenos/metabolismo , Sistema Nervoso Central/química , Sistema Nervoso Central/embriologia , Condrócitos/química , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/metabolismo , Imuno-Histoquímica , Botões de Extremidades/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Placenta/química , Placenta/embriologia , Placentação , Somitos/química , Somitos/citologia , Medula Espinal/química , Medula Espinal/embriologia , Saco Vitelino/química , Saco Vitelino/embriologia , Saco Vitelino/crescimento & desenvolvimento
4.
Biochim Biophys Acta ; 1739(1): 81-7, 2004 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-15607120

RESUMO

The ETS transcription factor GABPalpha is encoded by a gene on HSA21 and interacts with an ankyrin repeat-containing beta subunit to form the GABP complex. GABP regulates expression of genes involved in mitochondrial respiration and neuromuscular signalling. When GABPalpha mRNA is overexpressed in human DS fibroblast cell lines, or by tranfection in NIH3T3 cells, no increase in protein level is detected. However, increased Gabpalpha gene dosage in the Ts65Dn segmental trisomy mouse model of DS (DS) results in elevated Gabpalpha protein levels in brain and skeletal muscle only. These findings suggest that GABPalpha protein levels are tightly regulated in a tissue-specific manner, and consequently GABP may play a role in DS pathologies in tissues where GABPalpha protein levels are elevated.


Assuntos
Cromossomos Humanos Par 21 , Proteínas de Ligação a DNA/genética , Síndrome de Down/genética , Fatores de Transcrição/genética , Células 3T3 , Animais , Encéfalo/patologia , Encéfalo/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Síndrome de Down/patologia , Fibroblastos/fisiologia , Fator de Transcrição de Proteínas de Ligação GA , Dosagem de Genes , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Mutantes , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Especificidade de Órgãos , Serina Endopeptidases/genética , Fatores de Transcrição/metabolismo
5.
Gene ; 344: 79-92, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15656975

RESUMO

The erythroblast transformation specific (ETS) transcription factor GA-binding protein (Gabp) is widely expressed and acts on a diverse range of target genes, including nuclear-encoded mitochondrial proteins and neuromuscular-specific genes. The GABPalpha subunit contains an ETS DNA binding domain and the beta subunit contains a nuclear localization signal (NLS) and transactivation domain. Here, we show coincident expression of Gabpalpha and beta1 throughout mouse embryogenesis, consistent with the gene products functioning in a complex. We have also identified 2 alternatively spliced, tissue-specific exons 1 (5' untranslated regions) of mouse Gabpalpha and 4 alternative 3' polyadenylation signals that, in combination, result in 12 transcripts for Gabpalpha. These alternative transcripts are suggested to have altered stability, subcellular localization and/or translation efficiency. Further, we identified nine differentially expressed splice variants of mouse Gabpbeta1 that encode beta protein forms lacking functional domains, suggesting a dominant negative function. Together, alternative transcripts of Gabpalpha and beta1 provide a mechanism for tissue-specific regulation of Gabp activity.


Assuntos
Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Células 3T3 , Animais , Sítios de Ligação/genética , DNA Complementar/química , DNA Complementar/genética , Embrião de Mamíferos/metabolismo , Feminino , Fator de Transcrição de Proteínas de Ligação GA , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transcrição Gênica/genética
6.
Mech Dev ; 116(1-2): 165-8, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12128217

RESUMO

Ets2 is a member of the ETS family of transcription factors. In order to address the developmental function of Ets2, we have examined its expression pattern in E8.5 to E13.5 embryos using RNA whole-mount in situ hybridization. In the paraxial mesoderm, Ets2 is expressed uniformly in the presomitic mesoderm and then restricted to the cells in the rostral portion of the segmenting and the next two recently formed somites. In the developing limb, Ets2 expression in the mesenchyme reflects the progressive formation of the hand or foot plate and the digital skeleton. In addition, Ets2 is expressed in the otic vesicle and its derivatives, the dorsal (posterior) root ganglia, the neuroepithelium in the dorsal part of the caudal neural tube and the inter-segmental vasculature.


Assuntos
Proteínas de Ligação a DNA , Extremidades/embriologia , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras , Somitos/metabolismo , Transativadores/genética , Fatores de Transcrição , Animais , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Morfogênese/genética , Proteína Proto-Oncogênica c-ets-2 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Mol Biotechnol ; 29(2): 153-63, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15699570

RESUMO

Over the last decade transgenic mouse models have become a common experimental tool for unraveling gene function. During this time there has been a growing expectation that transgenes resemble the in vivo state as much as possible. To this end, a preference away from heterologous promoters has emerged, and transgene constructs often utilize the endogenous promoter and gene sequences in BAC, PAC and YAC form without the addition of selectable markers, or at least their subsequent removal. There has been a trend toward controlled integration by homologous recombination, either at a characterized chromosomal localization or in some cases within the allele of interest. Markers such as green fluorescent protein (GFP), beta-galactosidase (LacZ), and alkaline phosphatase (AP) continue to be useful to trace transgenic cells, or transgene expression. The development of technologies such as RNA interference (RNAi), are introducing new ways of using transgenic models. Future developments in RNAi technology may revolutionize tissue specific inactivation of gene function, without the requirement of generating conditionally targeted mice and tissue specific recombinase mice. Transgenic models are biological tools that aid discovery. Overall, the main consideration in the generation of transgenic models is that they are bona fide biological models that best impart the disease model or biological function of the gene that they represent. The main consideration is to make the best model for the biological question at heart and this review aims to simplify that task somewhat. Here we take a historical perspective on the development of transgenic models, with many of the important considerations to be made in design and development along the way.


Assuntos
Animais Geneticamente Modificados/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Animais , Humanos , Camundongos , Modelos Animais
8.
Biol Reprod ; 77(1): 108-14, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17377140

RESUMO

Cysteine-rich secretory protein (CRISP) 2 (previously TPX1) is a testis-enriched member of the CRISP family, and has been localized to both the sperm acrosome and tail. Like all members of the mammalian CRISP family, its expression pattern is strongly suggestive of a role in male fertility, but functional support for this hypothesis remains limited. In order to determine the biochemical pathways within which CRISP2 is a component, the putative mature form of CRISP2 was used as bait in a yeast two-hybrid screen of a mouse testis expression library. One of the most frequently identified interacting partners was mitogen-activated protein kinase kinase kinase 11 (MAP3K11). Sequencing and deletion experiments showed that the carboxyl-most 20 amino acids of MAP3K11 interacted with the CRISP domain of CRISP2. This interaction was confirmed using pull-down experiments and the cellular context was supported by the localization of CRISP2 and MAP3K11 to the acrosome of the developing spermatids and epididymal spermatozoa. Interestingly, mouse epididymal sperm contained an approximately 60-kDa variant of MAP3K11, which may have been a result of proteolytic cleavage of the longer 93-kDa form seen in many tissues. These data raise the possibility that CRISP2 is a MAP3K11-modifying protein or, alternatively, that MAP3K11 acts to phosphorylate CRISP2 during acrosome development.


Assuntos
Glicoproteínas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Espermatozoides/metabolismo , Animais , Moléculas de Adesão Celular , Epididimo/citologia , Glicoproteínas/genética , Concentração de Íons de Hidrogênio , MAP Quinase Quinase Quinases/genética , Masculino , Proteínas de Membrana , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Espermatozoides/citologia , Testículo/citologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
9.
Gastroenterology ; 122(5): 1455-66, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11984530

RESUMO

BACKGROUND & AIMS: The mammalian small intestine is lined by a highly specialized epithelium that functions in the digestion and absorption of nutrients. The molecular mechanisms that direct intestinal epithelial cell morphogenesis and terminal differentiation are poorly understood. We have previously identified Elf3 (E74-like factor-3) as a member of the ETS transcription factor family strongly expressed in small intestinal epithelium. The aim of this study is to investigate the biological roles of Elf3 in vivo. METHODS: Mice with a null mutation of Elf3 were generated through targeted gene disruption. Characterization of intestinal development was performed by histologic and immunohistochemical techniques. RESULTS: Targeted disruption of Elf3 resulted in fetal lethality of about 30% at around embryonic day 11.5. Seventy percent of the Elf3-deficent progeny were born and displayed severe alterations of tissue architecture in the small intestine, manifested by poor villus formation and abnormal morphogenesis and terminal differentiation of absorptive enterocytes and mucus-secreting goblet cells. Crypt cell proliferation, however, appeared intact in Elf3-deficient mice.Elf3-deficient enterocytes express markedly reduced levels of the transforming growth factor beta type II receptor (TGF-beta RII), an inducer of intestinal epithelial differentiation. CONCLUSIONS: Elf3 is an important regulator of morphogenesis and terminal differentiation of epithelial cell lineages in the small intestine.


Assuntos
Proteínas de Ligação a DNA , Mucosa Intestinal/embriologia , Morfogênese , Proteínas Proto-Oncogênicas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Apoptose , Diferenciação Celular , Divisão Celular , Matriz Extracelular/fisiologia , Camundongos , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA