Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(38): e2311966, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38770995

RESUMO

Wood delignification and densification enable the production of high strength and/or transparent wood materials with exceptional properties. However, processing needs to be more sustainable and besides the chemical delignification treatments, energy intense hot-pressing calls for alternative approaches. Here, this study shows that additional softening of delignified wood via a mild swelling process using an ionic liquid-water mixture enables the densification of tube-line wood cells into layer-by-layer sheet structures without hot-pressing. The natural capillary force induces self-densification in a simple drying process resulting in a transparent wood film. The as-prepared films with ≈150 µm thickness possess an optical transmittance ≈70%, while maintaining optical haze >95%. Due to the densely packed sheet structure with a large interfacial area, the reassembled wood film is fivefold stronger and stiffer than the delignified wood in fiber direction. Owing to a low density, the specific tensile strength and elastic modulus are as high as 282 MPa cm3 g-1 and 31 GPa cm3 g-1. A facile and highly energy efficient wood nanotechnology approach are demonstrated toward more sustainable materials and processes by directly converting delignified wood into transparent wood omitting polymeric matrix infiltration or mechanical pressing.

2.
Small ; : e2405558, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279332

RESUMO

The transition to sustainable materials and eco-efficient processes in commercial electronics is a driving force in developing green electronics. Iron-catalyzed laser-induced graphitization (IC-LIG) has been demonstrated as a promising approach for rendering biomaterials electrically conductive. To optimize the IC-LIG process and fully exploit its potential for future green electronics, it is crucial to gain deeper insights into its catalyzation mechanism and structural evolution. However, this is challenging due to the rapid nature of the laser-induced graphitization process. Therefore, multiscale preparation techniques, including ultramicrotomy of the cross-sectional transition zone from precursor to fully graphitized IC-LIG electrode, are employed to virtually freeze the IC-LIG process in time. Complementary characterization is performed to generate a 3D model that integrates nanoscale findings within a mesoscopic framework. This enabled tracing the growth and migration behavior of catalytic iron nanoparticles and their role during the catalytic laser-graphitization process. A three-layered arrangement of the IC-LIG electrode is identified including a highly graphitized top layer with an interplanar spacing of 0.343 nm. The middle layer contained γ-iron nanoparticles encapsulated in graphitic shells. A comparison with catalyst-free laser graphitization approaches highlights the unique opportunities that IC-LIG offers and discuss potential applications in energy storage devices, catalysts, sensors, and beyond.

3.
Plant Physiol ; 193(2): 1456-1478, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37339339

RESUMO

Molecular mechanisms that distinguish the synthesis of semi-crystalline α-glucan polymers found in plant starch granules from the synthesis of water-soluble polymers by nonplant species are not well understood. To address this, starch biosynthetic enzymes from maize (Zea mays L.) endosperm were isolated in a reconstituted environment using yeast (Saccharomyces cerevisiae) as a test bed. Ninety strains were constructed containing unique combinations of 11 synthetic transcription units specifying maize starch synthase (SS), starch phosphorylase (PHO), starch branching enzyme (SBE), or isoamylase-type starch debranching enzyme (ISA). Soluble and insoluble branched α-glucans accumulated in varying proportions depending on the enzyme suite, with ISA function stimulating distribution into the insoluble form. Among the SS isoforms, SSIIa, SSIII, and SSIV individually supported the accumulation of glucan polymer. Neither SSI nor SSV alone produced polymers; however, synergistic effects demonstrated that both isoforms can stimulate α-glucan accumulation. PHO did not support α-glucan production by itself, but it had either positive or negative effects on polymer content depending on which SS or a combination thereof was present. The complete suite of maize enzymes generated insoluble particles resembling native starch granules in size, shape, and crystallinity. Ultrastructural analysis revealed a hierarchical assembly starting with subparticles of approximately 50 nm diameter that coalesce into discrete structures of approximately 200 nm diameter. These are assembled into semi-crystalline α-glucan superstructures up to 4 µm in length filling most of the yeast cytosol. ISA was not essential for the formation of such particles, but their abundance was increased dramatically by ISA presence.


Assuntos
Endosperma , Sintase do Amido , Saccharomyces cerevisiae , Zea mays/genética , Proteínas de Plantas/química , Amido , Glucanos , Sintase do Amido/química
4.
Carbohydr Polym ; 339: 122166, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823895

RESUMO

Wood materials incorporating new properties are of great interest, especially for advanced applications such as sustainable optics and photonics. In this work we describe a wood functionalization approach, comprising the incorporation of artificial chemiluminescent systems (phenyl oxalate ester­hydrogen peroxide-fluorophore, and luminol-ferricyanide), resulting in light-emitting wood. By a detailed characterisation of the light emission features we point out the complex interaction between wood scaffold and chemiluminescent systems, especially the quenching effect of wood extractives (for the TCPO-H2O2-fluorophore system) and lignin (for the luminol-ferricyanide system). Moreover, we take advantage of the intrinsic anisotropic porosity and capillarity of wood tissue to study the chemiluminescent front propagation. Our results may inspire the development of novel light-emitting wood materials for a variety of applications, from fundamental studies of water uptake in wood to sensors and even design elements.

5.
Carbohydr Polym ; 339: 122245, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823913

RESUMO

The high structural anisotropy and colloidal stability of cellulose nanofibrils' enable the creation of self-standing fibrillar hydrogel networks at very low solid contents. Adding methacrylate moieties on the surface of TEMPO oxidized CNFs allows the formation of more robust covalently crosslinked networks by free radical polymerization of acrylic monomers, exploiting the mechanical properties of these networks more efficiently. This technique yields strong and elastic networks but with an undefined network structure. In this work, we use acrylate-capped telechelic polymers derived from the step-growth polymerization of PEG diacrylate and dithiothreitol to crosslink methacrylated TEMPO-oxidized cellulose nanofibrils (MATO CNF). This combination resulted in flexible and strong hydrogels, as observed through rheological studies, compression and tensile loading. The structure and mechanical properties of these hydrogel networks were found to depend on the dimensions of the CNFs and polymer crosslinkers. The structure of the networks and the role of individual components were evaluated with SAXS (Small-Angle X-ray Scattering) and photo-rheology. A thorough understanding of hybrid CNF/polymer networks and how to best exploit the capacity of these networks enable further advancement of cellulose-based materials for applications in packaging, soft robotics, and biomedical engineering.

6.
ACS Sustain Chem Eng ; 12(23): 8662-8670, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38872957

RESUMO

Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.

7.
Nanoscale Adv ; 5(8): 2175-2179, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37056627

RESUMO

The addition of silver(i) ions to the methylene glycol-sulphite (MGS) clock reaction results in the sudden formation of metallic silver nanoparticles. Stable suspensions are obtained in the presence of poly(vinylpyrrolidone). The time delay before the appearance of the particles, as well as their size, decreases with the initial methylene glycol concentration while their monodispersity increases.

8.
Sci Adv ; 9(21): eadg7448, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235646

RESUMO

Starch, the most abundant carbohydrate reserve in plants, primarily consists of the branched glucan amylopectin, which forms semi-crystalline granules. Phase transition from a soluble to an insoluble form depends on amylopectin architecture, requiring a compatible distribution of glucan chain lengths and a branch-point distribution. Here, we show that two starch-bound proteins, LIKE EARLY STARVATION 1 (LESV) and EARLY STARVATION 1 (ESV1), which have unusual carbohydrate-binding surfaces, promote the phase transition of amylopectin-like glucans, both in a heterologous yeast system expressing the starch biosynthetic machinery and in Arabidopsis plants. We propose a model wherein LESV serves as a nucleating role, with its carbohydrate-binding surfaces helping align glucan double helices to promote their phase transition into semi-crystalline lamellae, which are then stabilized by ESV1. Because both proteins are widely conserved, we suggest that protein-facilitated glucan crystallization may be a general and previously unrecognized feature of starch biosynthesis.


Assuntos
Amilopectina , Arabidopsis , Amilopectina/química , Amilopectina/metabolismo , Amido/química , Glucanos/química , Glucanos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo
9.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666966

RESUMO

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Assuntos
Lignina , Madeira , Biomassa , Celulose
10.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364518

RESUMO

We demonstrate the autonomous synthesis of iron (hydr)oxide (green rust, magnetite, and lepidocrocite) nanoparticles by precipitating iron(II) ions using hydroxide ions generated in situ with the methylene glycol-sulfite (MGS) reaction, a pH-clock. We show that the nature of the products can be predetermined by tuning the initial iron(II) concentration.

11.
Materials (Basel) ; 15(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161110

RESUMO

We describe a preliminary investigation of the dissolution dynamics of zinc oxide nanoparticles in the presence of cyclic esters (δ-gluconolactone and propanesultone) as slow acid generators. The particles dissolution is monitored by means of turbidimetry and correlated with the evolution of pH over time. The results could be of interest for the design of chemically programmable colloidal systems.

12.
Nat Commun ; 13(1): 3680, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760793

RESUMO

Ecologically friendly wood electronics will help alleviating the shortcomings of state-of-art cellulose-based "green electronics". Here we introduce iron-catalyzed laser-induced graphitization (IC-LIG) as an innovative approach for engraving large-scale electrically conductive structures on wood with very high quality and efficiency, overcoming the limitations of conventional LIG including high ablation, thermal damages, need for multiple lasing steps, use of fire retardants and inert atmospheres. An aqueous bio-based coating, inspired by historical iron-gall ink, protects wood from laser ablation and thermal damage while promoting efficient graphitization and smoothening substrate irregularities. Large-scale (100 cm2), highly conductive (≥2500 S m-1) and homogeneous surface areas are engraved single-step in ambient atmosphere with a conventional CO2 laser, even on very thin (∼450 µm) wood veneers. We demonstrate the validity of our approach by turning wood into highly durable strain sensors, flexible electrodes, capacitive touch panels and an electroluminescent LIG-based device.


Assuntos
Ferro , Madeira , Catálise , Eletrônica , Lasers
13.
ACS Appl Mater Interfaces ; 13(27): 32022-32030, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196177

RESUMO

It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based type-II QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of ∼91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle X-ray scattering shows that spherical InP core and InP/ZnO core/shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA