Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 25(8): 083113, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26328564

RESUMO

We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.


Assuntos
Algoritmos , Modelos Teóricos , Fatores de Tempo
2.
Data Brief ; 28: 105012, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31956667

RESUMO

The analysis of the interplay between structural and functional networks require experiments where both the specific structure of the connections between nodes and the time series of the underlying dynamical units are known at the same time. However, real datasets typically contain only one of the two ways (structural or functional) a network can be observed. Here, we provide experimental recordings of the dynamics of 28 nonlinear electronic circuits coupled in 20 different network configurations. For each network, we modify the coupling strength between circuits, going from an incoherent state of the system to a complete synchronization scenario. Time series containing 30000 points are recorded using a data-acquisition card capturing the analogic output of each circuit. The experiment is repeated three times for each network structure allowing to track the path to the synchronized state both at the level of the nodes (with its direct neighbours) and at the whole network. These datasets can be useful to test new metrics to evaluate the coordination between dynamical systems and to investigate to what extent the coupling strength is related to the correlation between functional and structural networks.

3.
Sci Rep ; 10(1): 14668, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887920

RESUMO

The interplay between structure and function is critical in the understanding of complex systems, their dynamics and their behavior. We investigated the interplay between structural and functional networks by means of the differential identifiability framework, which here quantifies the ability of identifying a particular network structure based on (1) the observation of its functional network and (2) the comparison with a prior observation under different initial conditions. We carried out an experiment consisting of the construction of [Formula: see text] different structural networks composed of [Formula: see text] nonlinear electronic circuits and studied the regions where network structures are identifiable. Specifically, we analyzed how differential identifiability is related to the coupling strength between dynamical units (modifying the level of synchronization) and what are the consequences of increasing the amount of noise existing in the functional networks. We observed that differential identifiability reaches its highest value for low to intermediate coupling strengths. Furthermore, it is possible to increase the identifiability parameter by including a principal component analysis in the comparison of functional networks, being especially beneficial for scenarios where noise reaches intermediate levels. Finally, we showed that the regime of the parameter space where differential identifiability is the highest is highly overlapped with the region where structural and functional networks correlate the most.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA