Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38559212

RESUMO

The analysis of tissue cultures, particularly brain organoids, takes a high degree of coordination, measurement, and monitoring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Unified by an Internet of Things (IoT) architecture, our approach enables continuous, communicative interactions among various sensing and actuation devices, achieving precisely timed control of in vitro biological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids and monitor their neuronal activity. The organoids are cultured in custom, 3D-printed chambers attached to commercial microelectrode arrays for electrophysiology monitoring. Periodic feeding is achieved using programmable microfluidic pumps. We developed computer vision fluid volume estimations of aspirated media, achieving high accuracy, and used feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a 7-day study of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated experimental samples maintained robust neural activity throughout the experiment, comparable with the control samples. The automated system enabled hourly electrophysiology recordings that revealed dramatic temporal changes in neuron firing rates not observed in once-a-day recordings.

2.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503236

RESUMO

The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.

3.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016807

RESUMO

The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Organoides , Neurônios
4.
Artigo em Inglês | MEDLINE | ID: mdl-37383277

RESUMO

The Internet of Things (IoT) provides a simple framework to control online devices easily. IoT is now a commonplace tool used by technology companies but is rarely used in biology experiments. IoT can benefit cloud biology research through alarm notifications, automation, and the real-time monitoring of experiments. We developed an IoT architecture to control biological devices and implemented it in lab experiments. Lab devices for electrophysiology, microscopy, and microfluidics were created from the ground up to be part of a unified IoT architecture. The system allows each device to be monitored and controlled from an online web tool. We present our IoT architecture so other labs can replicate it for their own experiments.

5.
IEEE Trans Neural Syst Rehabil Eng ; 26(8): 1604-1617, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29994617

RESUMO

For stroke survivors and many other people with upper-extremity impairment, daily life can be difficult without properly functioning arms. Some modern physical therapy exercises focus on rehabilitating people with these troubles by correcting patients' perceptions of their own body to eventually regain complete control and strength over their arms again. Augmentative wearable robots, such as the upper-extremity exoskeletons and exosuits, may be able to assist in this endeavor. A common drawback in many of these exoskeletons, however, is their inability to conform to the natural flexibility of the human body without a rigid base. We have built one such exosuit to address this challenge: Compliant Robotic Upper-extremity eXosuit (CRUX). This robot is a compliant, lightweight, multi-DoF, portable exosuit that affords its wearer the ability to augment themselves in many unconventional settings (i.e. outside of a clinic). These attributes are largely achieved by using a modified tensegrity design situated according to measured lines of minimal-extension, where a network of tension members provide a foundation to apply augmentative forces via precisely placed power-lines. In this paper, we detail the design process of CRUX, the report on CRUX's prototypical composition, and describe the mimetic control algorithm used. We also discuss the results of three studies that illustrate the efficacy of CRUX's mimetic controller, CRUX's flexibility and compliance, and the metabolic cost reduction when users exercise with assistance from CRUX as opposed to without. We conclude this paper with a summary of our findings, potential use cases for this technology, and the direction of future related work.


Assuntos
Exoesqueleto Energizado , Reabilitação do Acidente Vascular Cerebral/instrumentação , Extremidade Superior , Adulto , Idoso , Algoritmos , Braço/fisiologia , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Robótica , Caminhada , Adulto Jovem
6.
IEEE Int Conf Rehabil Robot ; 2017: 1633-1638, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28814054

RESUMO

Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.


Assuntos
Exoesqueleto Energizado , Extremidade Superior/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Desenho de Equipamento , Terapia por Exercício/instrumentação , Frequência Cardíaca/fisiologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA