RESUMO
Conservation references have long been used in conservation biology to compare current biodiversity processes and states with past conditions. However, beyond the paucity of data for the construction of ancient, even prehuman, references, the relevance of these ancient references for studying ecosystems radically modified by human activities is questionable, particularly when the notions of conservation references and conservation objectives are confused and when several conservation ethics coexist that require distinct references. Because of this implicit heterogeneity in the nature of the references and their temporal baseline, conservation references not only have different meanings, but also deliver different messages. I propose establishing a common framework for conservation references to approach past biological systems and build comparable references between studies and projects. The selection of these references (distinct from conservation objectives) should be an early, explicit, standardized, and transparent milestone in any conservation process and these references should be based on state, pressure, or process dynamics, rather than fixed states. Finally, the importance of the diversity of temporal baselines used to build conservation references and to measure anthropogenic impacts should be recognized to understand the biodiversity crisis in its entirety.
Creación de referentes para la conservación de la naturaleza Resumen Los referentes en conservación se han usado durante mucho tiempo en la biología de la conservación para comparar los procesos y estados actuales de la biodiversidad con las condiciones del pasado. Sin embargo, más allá de la escasez de datos para la construcción de referentes antiguos, o incluso prehumanos, es cuestionable la relevancia de estos referentes antiguos para estudiar los ecosistemas con modificaciones radicales por actividades humanas, particularmente cuando se confunden las nociones de los referentes en conservación y los objetivos de conservación y cuando coexisten varios enfoques éticos de la conservación que requieren de diferentes referentes. Debido a esta heterogeneidad implícita en la naturaleza de los referentes y su línea base temporal, los referentes en conservación no sólo tienen diferentes significados, sino también comunican diferentes mensajes. Propongo que se establezca un marco común para que los referentes en conservación puedan abordar los sistemas biológicos del pasado y crear referentes comparables entre estudios y proyectos. La selección de estos referentes (distintos a los objetivos de conservación) debería ser un hito temprano, explícito, estandarizado y transparente en cualquier proceso de conservación y estos referentes deberían basarse en las dinámicas del estado, presión o proceso en lugar de los estados fijos. Por último, se debería reconocer la importancia de la diversidad de líneas base temporales que se usa para crear referentes en la conservación y para medir el impacto antropogénico para así entender la crisis de la biodiversidad en su totalidad.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Biodiversidade , Atividades HumanasRESUMO
Ethanol consumption impairs learning and memory through disturbances of NMDA-type glutamate receptor-dependent synaptic plasticity (long-term depression [LTD] and long-term potentiation [LTP]) in the hippocampus. Recently, we demonstrated that two ethanol binge-like episodes in young adult rats selectively blocked NMDA-LTD in hippocampal slices, increased NMDA receptor sensitivity to a GluN2B subunit antagonist, and induced cognitive deficits. Here, using knockout adult mice, we show that a stress-responsive transcription factor of the heat shock factor family, HSF2, which is involved in the perturbation of brain development induced by ethanol, participates in these processes. In the absence of ethanol, hsf2-/- mice show a selective loss of LTD in the hippocampus, which is associated with an increased sensitivity of NMDA-field excitatory postsynaptic potentials (fEPSPs) to a GluN2B antagonist, compared with wild-type (WT) mice. These results suggest that HSF2 is required for proper glutamatergic synaptic transmission and LTD plasticity. After 1 month of chronic ethanol consumption in a two-bottle choice paradigm, WT mice showed an increase in hippocampal synaptic transmission, an enhanced sensitivity to GluN2B antagonist, and a blockade of LTD. In contrast, such modulation of synaptic transmission and plasticity were absent in hsf2-/- mice. We conclude that HSF2 is an important mediator of both glutamatergic neurotransmission and synaptic plasticity in basal conditions and also mediates ethanol-induced neuroadaptations of the hippocampus network after chronic ethanol intake.
Assuntos
Etanol/farmacologia , Fatores de Transcrição de Choque Térmico/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , N-Metilaspartato/efeitos dos fármacos , Adolescente , Adulto , Fatores Etários , Animais , Hipocampo/efeitos dos fármacos , Humanos , CamundongosRESUMO
Reintroductions offer a powerful tool for reversing the effects of species extirpation and have been increasingly used over recent decades. However, this species-centered conservation approach has been criticized for its strong biases toward charismatic birds and mammals. Here, we investigated whether reintroduced species can be representative of the phylogenetic diversity within these two groups at a continental scale (i.e., Europe, North and Central America). Using null models, we found that reintroduced birds and mammals of the two subcontinents tend to be more evolutionarily distinct than expected by chance, despite strong taxonomic biases leading to low values of phylogenetic diversity. While evolutionary considerations are unlikely to have explicitly driven the allocation of reintroduction efforts, our results illustrate an interest of reintroduction practitioners toward species with fewer close relatives. We discuss how this phylogenetic framework allows us to investigate the contribution of reintroductions to the conservation of biodiversity at multiple geographic scales. We argue that because reintroductions rely on a parochial approach of conservation, it is important to first understand how the motivations and constraints at stake at a local context can induce phylogenetic biases before trying to assess the relevance of the allocation of reintroduction efforts at larger scales.
Assuntos
Biodiversidade , Evolução Biológica , Aves/fisiologia , Conservação dos Recursos Naturais , Mamíferos/fisiologia , Animais , América Central , Europa (Continente) , FilogeniaRESUMO
Protection and restoration of species in the wild may require conservation breeding programs under genetic management to minimize deleterious effects of genetic changes that occur in captivity, while preserving populations' genetic diversity and evolutionary resilience. Here, through interannual pedigree analyses, we first assessed the efficiency of a 21-year genetic management, including minimization of mean kinship, inbreeding avoidance, and regular addition of founders, of a conservation breeding program targeting on Houbara bustard (Chlamydotis undulata undulata) in Morocco. Secondly, we compared pedigree analyses, the classical way of assessing and managing genetic diversity in captivity, to molecular analyses based on seven microsatellites. Pedigree-based results indicated an efficient maintenance of the genetic diversity (99% of the initial genetic diversity retained) while molecular-based results indicated an increase in allelic richness and an increase in unbiased expected heterozygosity across time. The pedigree-based average inbreeding coefficient F remained low (between 0.0004 and 0.003 in 2017) while the proportion of highly inbred individuals (F > .1) decreased over time and reached 0.2% in 2017. Furthermore, pedigree-based F and molecular-based individual multilocus heterozygosity were weakly negatively correlated, (Pearson's r = -.061 when considering all genotyped individuals), suggesting that they cannot be considered as alternatives, but rather as complementary sources of information. These findings suggest that a strict genetic monitoring and management, based on both pedigree and molecular tools can help mitigate genetic changes and allow to preserve genetic diversity and evolutionary resilience in conservation breeding programs.
Assuntos
Aves/genética , Animais , Aves/classificação , Conservação dos Recursos Naturais , DNA/genética , Feminino , Genótipo , Endogamia , Masculino , Repetições de Microssatélites , Marrocos , Linhagem , Fatores de TempoRESUMO
Reproduction costs depend on the general life-history strategies employed by organisms for resource acquisition, the decision rules on resource allocation, and the resource availability. Although the predictability of resource availability is expected to influence the breeding strategy, the relationship between predictability and strategy has rarely been investigated at the population level. One reason is that, while the resource availability is commonly variable in space and time, their predictability is generally assumed constant. Here, we addressed the temporal variation of the breeding strategy and its associated survival cost in a hibernating population of Tamias sibiricus, in which food resources vary in their availability between years and in their predictability within years. Based on 11 years of mark-recapture data, we used multi-event modelling to investigate seasonal variations in reproduction costs of female chipmunks that breed twice a year (spring and summer). In summer, during which a large variety and quantity of resources is available (income breeding strategy), the proportion of breeding females was consistent across years and reproduction yielded no mortality cost. In contrast, in spring, the proportion of breeding females was positively correlated with the amount of resources available for hibernation (partial capital breeding strategy). Spring reproduction yielded no immediate cost, but induced a delayed mortality cost over the next winter if future unknown conditions were unfavorable. Our findings highlight complex temporal reproductive patterns in a short-lived species: not only does the modality of resource acquisition vary among seasons, but also the decision rule to breed and its associated cost.
Assuntos
Hibernação , Reprodução , Animais , Cruzamento , Feminino , Humanos , Sciuridae , Estações do AnoRESUMO
The field of biodiversity conservation has recently been criticized as relying on a fixist view of the living world in which existing species constitute at the same time targets of conservation efforts and static states of reference, which is in apparent disagreement with evolutionary dynamics. We reviewed the prominent role of species as conservation units and the common benchmark approach to conservation that aims to use past biodiversity as a reference to conserve current biodiversity. We found that the species approach is justified by the discrepancy between the time scales of macroevolution and human influence and that biodiversity benchmarks are based on reference processes rather than fixed reference states. Overall, we argue that the ethical and theoretical frameworks underlying conservation research are based on macroevolutionary processes, such as extinction dynamics. Current species, phylogenetic, community, and functional conservation approaches constitute short-term responses to short-term human effects on these reference processes, and these approaches are consistent with evolutionary principles.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Evolução Biológica , Humanos , FilogeniaRESUMO
Low to moderate perinatal ethanol exposure (PEE) may have disastrous consequences for the central nervous system resulting notably in permanent cognitive deficits. Learning and memory are mediated in the hippocampus by long-term potentiation (LTP) and long term depression (LTD), two forms of synaptic plasticity. PEE decreases LTP but also abnormally facilitates LTD (Kervern et al. ) through a presently unknown mechanism. We studied in rat hippocampus slice, the involvement of the chloride co-transporters NKCC1 and KCC2, in the role of GABAA inhibitions in facilitated LTD after moderate PEE. After PEE and in contrast to control slices, facilitated LTD in CA1 field was reduced by the GABAA receptor antagonist bicuculline with no changes in sensitivity to bicuculline and in GABA and benzodiazepine binding sites. Also, sensitivity to diazepam was unaltered, whereas aberrant LTD was blocked. Immunohistochemistry and protein analysis demonstrated an increase in KCC2 protein level at cell membrane in CA1 after PEE with no change in NKCC1 expression. Specifically, both monomeric and dimeric forms of KCC2 were increased in CA1. Bumetanide (10-100 µM), a dose-dependent blocker of NKCC1 and KCC2, or VU0240551 (10 µM) a specific antagonist of KCC2, corrected the enhanced LTD and interestingly bumetanide also restored the lower LTP after PEE. These results demonstrate for the first time an upregulation of the KCC2 co-transporter expression after moderate PEE associated with disturbances in GABAergic neurotransmission modulating bidirectional synaptic plasticity in the hippocampus. Importantly, bumetanide compensated deficits in both LTP and LTD, revealing its potential therapeutic properties.
Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Simportadores/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Western Blotting , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Simportadores/metabolismo , Cotransportadores de K e Cl-RESUMO
Most research on the demography of wild animal populations has focused on characterizing the variation in the mortality of organisms as a function of intrinsic and environmental characteristics. However, such variation in mortality is difficult to relate to functional life history components (e.g. reproduction, dispersal, hibernation) due to the difficulty in monitoring biological processes at a sufficiently fine timescale. In this study, we used a 10-year individual-based data set with an infra-annual timescale to investigate both intra- and inter-annual survival patterns according to intrinsic and environmental covariates in an introduced population of a small hibernating rodent, the Siberian chipmunk. We compared three distinct periods related to particular life history events: spring reproduction, summer reproduction and hibernation. Our results revealed strong interactions between intrinsic and temporal effects. First, survival of male chipmunks strongly decreases during the reproduction periods, while survival is high and equal between sexes during hibernation. Second, the season of birth affects the survival of juveniles during their first hibernation, which does not have long-lasting consequences at the adult stage. Third, at an inter-annual scale, we found that high food resource availability before hibernation and low chipmunk densities specifically favour subsequent winter survival. Overall, our results confirm that the well-known patterns of yearly and inter-individual variation of mortality observed in animals are themselves strongly variable within a given year, suggesting that they are associated with various functional components of the animals' life history.
Assuntos
Hibernação , Sciuridae , Animais , Demografia , Reprodução , Estações do AnoRESUMO
Positive covariations between survival and reproductive performance (S-R covariation) are generally interpreted in the context of fixed or dynamic demographic heterogeneity (i.e. persistent differences between individuals, or dynamic variation in resource acquisition), but the processes underlying covariations are still unknown. We used multi-event modelling to investigate how environmental and individual features influence S-R covariation patterns in a long-lived seabird, the Monteiro's storm petrel (Oceanodroma monteiroi). Our analysis reveals that a strong positive association between individual breeding success and subsequent survival occurs only when conditions are favourable to reproduction (in favourable years, in high-quality nests and in nest-faithful breeders). This finding reflects differences in the main causes of breeding failure and mortality under favourable and unfavourable conditions, which in turn lead to distinct patterns of S-R covariation. We suggest, in particular, that resource-related sources of demographic heterogeneity do not generate a strong S-R covariation, in contrast with hidden and unpredictable sources of variation.
Assuntos
Aves/fisiologia , Meio Ambiente , Longevidade , Comportamento de Nidação , Reprodução/fisiologia , Animais , Açores , Feminino , Masculino , Modelos BiológicosRESUMO
BACKGROUND: Binge drinking is common in adolescents, but the impact of only a few binges on learning and memory appears underestimated. Many studies have tested the effects of long and intermittent ethanol exposure on long-term synaptic potentiation, and whether long-term synaptic depression is affected remains unknown. METHODS: We studied the effects of one (3 g/kg, i.p.; blood ethanol content of 197.5±19 mg/dL) or 2 alcohol intoxications (given 9 hours apart) on adolescent rat's memory and synaptic plasticity in hippocampus slice after different delay. RESULTS: Animals treated with 2 ethanol intoxications 48 hours before training phase in the novel object recognition task failed during test phase. As learning is related to NMDA-dependent mechanisms, we tested ketamine and found the same effect as ethanol, whereas D-serine prevented learning deficit. In hippocampus slice, NMDA-dependent long-term synaptic depression was abolished 48 hours after ethanol or ketamine but prevented after D-serine or in a low-Mg(2+) recording medium. Long-term synaptic depression abolition was not observed 8 days after treatment. An i.p. treatment with MK-801, tetrahydroisoxazolopyridine, or muscimol was ineffective, and long-term synaptic potentiation, intrinsic excitability, and glutamate release remained unaffected. The input/ouput curve for NMDA-fEPSPs was shifted to the left 48 hours after the binges with a stronger contribution of GluN2B subunit, leading to a leftward shift of the Bienenstock-Cooper-Munro relationship. Interestingly, there were no cellular effects after only one ethanol injection. CONCLUSION: Two ethanol "binges" in adolescent rats are sufficient to reversibly abolish long-term synaptic depression and to evoke cognitive deficits via a short-lasting, repeated blockade of NMDA receptors only, inducing a change in the receptor subunit composition. Furthermore, ethanol effects developed over a 48-hour period of abstinence, indicating an important role of intermittence during a repeated long-duration binge behavior.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas/complicações , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Hipocampo/efeitos dos fármacos , Transtornos da Memória/etiologia , Animais , Animais Recém-Nascidos , Consumo Excessivo de Bebidas Alcoólicas/etiologia , Depressores do Sistema Nervoso Central/sangue , Estimulação Elétrica , Etanol/sangue , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Serina/farmacologia , Fatores de TempoRESUMO
Despite recent acknowledgement that senescence can have negative impact on survival and fertility in natural environments across a wide range of animal species, we still do not know if it can reduce the viability of wild endangered populations. Focusing on actuarial senescence (i.e., the decline of survival probabilities at old ages), we use species-specific demographic information to project the extinction risk of wild populations of 58 species of mammals, accounting (or not) for senescence. Our projections reveal potential negative effects of aging on population viability, with an average decrease of 27% of the time to extinction and a potential deterioration of the population-level projected conservation status in 10% of the species. Senescence is associated with particularly strong increases of the extinction risk in species with low mortality rates and long intervals between litters, independently of their place in the phylogeny, indicating that the pace of life history can be used to forecast the detrimental effects of aging on the viability of species. The aim of the various existing systems of classification of threatened species is to set conservation priorities based on assessments of extinction risk. Our results indicate that the quantitative effects of senescence on extinction are highly heterogeneous, which can affect the ranking of species and populations when setting conservation, priorities. In mammals, based on life history traits of a few species, generic patterns of senescence can be incorporated into projection population models to minimize these biases in viability assessments.
Assuntos
Envelhecimento , Extinção Biológica , Mamíferos , Modelos Biológicos , Animais , Peso Corporal , Tamanho da Ninhada de Vivíparos , Fatores de RiscoRESUMO
In mammalian hosts, macroparasite aggregation is highly heterogeneous over space and time and among individuals. While the exact causes of this heterogeneity remain unclear, it has mainly been attributed to individual differences in exposure and susceptibility. Although some extrinsic (e.g., parasite availability) and intrinsic (e.g., sex or age) factors are well known to affect infestation patterns, the joint and possibly interacting effects of these factors are poorly understood. Here, we study the infestation of hard ticks (mainly Ixodes ricinus) in a small rodent, the Siberian chipmunk (Tamias sibiricus), introduced to an oak-hornbeam forest in France. We investigate the seasonal variation in infestation according to the sex, age, birth season (spring-born or summer-born), and body weight of individual hosts while controlling for interannual variability. During the 10-year study period, 3421 tick count events were recorded involving 1017 chipmunks monitored by the capture-mark-recapture procedure. Our results reveal a male-biased parasitism in the Siberian chipmunk, which is not consistent among individuals born in different seasons. This sex bias is observed among spring-born juveniles from July to the beginning of hibernation. For adults, this difference becomes apparent along the reproduction period (May-September) for summer-born adults only. These complex interactions between sex, age, and birth season suggest overall that the seasonal variation of tick load is critically linked to the reproductive behavior of this small ground sciurid.
Assuntos
Ixodes/fisiologia , Sciuridae/parasitologia , Infestações por Carrapato/parasitologia , Fatores Etários , Animais , Feminino , França/epidemiologia , Masculino , Estações do Ano , Fatores Sexuais , Infestações por Carrapato/epidemiologiaRESUMO
Although the reproductive success of most organisms depends on factors acting at several spatial scales, little is known about how organisms are able to synthesize multi-scale information to optimize reproduction. Using longitudinal data from a long-lived seabird, Monteiro's storm-petrel, we show that average breeding success is strongly related to oceanic conditions at the population level, and we postulate that (i) individuals use proximal information (their own reproduction outcome in year t) to assess the qualities of their mate and nest and to decide to retain them or not in year t + 1; (ii) the intensity of these responses depends on the quality of the oceanic environment in year t, which affects the predictability of reproduction outcome in year t + 1. Our results confirm that mate and nest fidelities are higher following successful reproduction and that the relationship between the success of a given pair and subsequent nest fidelity is stronger in years with unfavourable oceanic conditions, suggesting that individuals rely on distant information to modulate their use of proximal information and adjust their breeding strategy.
Assuntos
Aves/fisiologia , Meio Ambiente , Comportamento de Nidação , Reprodução , Animais , Feminino , Longevidade , Masculino , Oceanos e Mares , Estações do AnoRESUMO
The increasing abundance of animal species thriving in urban environments is a source of conflicts with managers and users of public spaces. Although opportunistic urban species often use resources originating from human food leftovers, the potential impact of a reduction in these resources on their demography is hard to quantify. The COVID-19 epidemic, which led many countries to set up lockdowns, gave us the opportunity to estimate the impact of a drastic reduction in such food resources and human activities on the demography of an urban bird population. Based on 7 years (2015-2021) of capture-mark-recapture of carrion crows (Corvus corone) in the city of Paris, France, we used multi-state models to examine the intra-annual (3-month time steps) apparent survival and movement patterns of crows during and outside COVID-19 lockdowns. We showed that the apparent survival of juvenile carrion crows decreased down during lockdown, while adult movements increased during this period, with more adult crows moving out of the urban district. Lockdown modified the demography of this urban crow population, suggesting that the reduction in food resources was sufficient to affect fitness and reduce carrying capacity.
Assuntos
COVID-19 , Corvos , Corvos/fisiologia , Animais , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/isolamento & purificação , Quarentena , Paris/epidemiologia , População Urbana , Dinâmica Populacional , Cidades/epidemiologiaRESUMO
INTRODUCTION: Fever treatment is commonly applied in patients with sepsis but its impact on survival remains undetermined. Patients with respiratory and haemodynamic failure are at the highest risk for not tolerating the metabolic cost of fever. However, fever can help to control infection. Treating fever with paracetamol has been shown to be less effective than cooling. In the SEPSISCOOL pilot study, active fever control by external cooling improved organ failure recovery and early survival. The main objective of this confirmatory trial is to assess whether fever control at normothermia can improve the evolution of organ failure and mortality at day 60 of febrile patients with septic shock. This study will compare two strategies within the first 48 hours of septic shock: treatment of fever with cooling or no treatment of fever. METHODS AND ANALYSIS: SEPSISCOOL II is a pragmatic, investigator-initiated, adaptive, multicentre, open-label, randomised controlled, superiority trial in patients admitted to the intensive care unit with febrile septic shock. After stratification based on the acute respiratory distress syndrome status, patients will be randomised between two arms: (1) cooling and (2) no cooling. The primary endpoint is mortality at day 60 after randomisation. The secondary endpoints include the evolution of organ failure, early mortality and tolerance. The target sample size is 820 patients. ETHICS AND DISSEMINATION: The study is funded by the French health ministry and was approved by the ethics committee CPP Nord Ouest II (Amiens, France). The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04494074.
Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/terapia , Choque Séptico/complicações , Respiração Artificial , Projetos Piloto , Febre/terapia , Febre/complicações , Sepse/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como AssuntoRESUMO
Mutational meltdown, in which demographic and genetic processes mutually reinforce one another to accelerate the extinction of small populations, has been poorly quantified despite its potential importance in conservation biology. Here we present a model-based framework to study and quantify the mutational meltdown in a finite diploid population that is evolving continuously in time and subject to resource competition. We model slightly deleterious mutations affecting the population demographic parameters and study how the rate of mutation fixation increases as the genetic load increases, a process that we investigate at two timescales: an ecological scale and a mutational scale. Unlike most previous studies, we treat population size as a random process in continuous time. We show that as deleterious mutations accumulate, the decrease in mean population size accelerates with time relative to a null model with a constant mean fixation time. We quantify this mutational meltdown via the change in the mean fixation time after each new mutation fixation, and we show that the meltdown appears less severe than predicted by earlier theoretical work. We also emphasize that mean population size alone can be a misleading index of the risk of population extinction, which could be better evaluated with additional information on demographic parameters.
Assuntos
Diploide , Modelos Genéticos , Mutação , Evolução Molecular , Extinção Biológica , Densidade Demográfica , Processos EstocásticosRESUMO
Current oncogenic theories state that tumors arise from cell lineages that sequentially accumulate (epi)mutations, progressively turning healthy cells into carcinogenic ones. While those models found some empirical support, they are little predictive of intraspecies age-specific cancer incidence and of interspecies cancer prevalence. Notably, in humans and lab rodents, a deceleration (and sometimes decline) of cancer incidence rate has been found at old ages. Additionally, dominant theoretical models of oncogenesis predict that cancer risk should increase in large and/or long-lived species, which is not supported by empirical data. Here, we explore the hypothesis that cellular senescence could explain those incongruent empirical patterns. More precisely, we hypothesize that there is a trade-off between dying of cancer and of (other) ageing-related causes. This trade-off between organismal mortality components would be mediated, at the cellular scale, by the accumulation of senescent cells. In this framework, damaged cells can either undergo apoptosis or enter senescence. Apoptotic cells lead to compensatory proliferation, associated with an excess risk of cancer, whereas senescent cell accumulation leads to ageing-related mortality. To test our framework, we build a deterministic model that first describes how cells get damaged, undergo apoptosis, or enter senescence. We then translate those cellular dynamics into a compound organismal survival metric also integrating life-history traits. We address four different questions linked to our framework: can cellular senescence be adaptive, do the predictions of our model reflect epidemiological patterns observed among mammal species, what is the effect of species sizes on those answers, and what happens when senescent cells are removed? Importantly, we find that cellular senescence can optimize lifetime reproductive success. Moreover, we find that life-history traits play an important role in shaping the cellular trade-offs. Overall, we demonstrate that integrating cellular biology knowledge with eco-evolutionary principles is crucial to solve parts of the cancer puzzle.
RESUMO
BACKGROUND: Polymicrobial infections are complex infections associated with worse outcomes compared to monomicrobial infections. We need simple, fast, and cost-effective animal models to assess their still poorly known pathogenesis. METHODS: We developed a Drosophila melanogaster polymicrobial infection model for opportunistic pathogens and assessed its capacity to discriminate the effects of bacterial mixtures taken from cases of human polymicrobial infections by Aeromonas strains. A systemic infection was obtained by needle pricking the dorsal thorax of the flies, and the fly survival was monitored over time. Different lineages of the flies were infected by a single strain or paired strains (strain ratio 1:1). RESULTS: Individual strains killed more than 80% of the flies in 20 h. The course of infection could be altered with a microbial mix. The model could distinguish between the diverse effects (synergistic, antagonistic, and no difference) that resulted in a milder, more severe, or similar infection, depending on the paired strain considered. We then investigated the determinants of the effects. The effects were maintained in deficient fly lineages for the main signaling pathways (Toll deficient and IMD deficient), which suggests an active microbe/microbe/host interaction. CONCLUSION: These results indicate that the D. melanogaster systemic infection model is consistent with the study of polymicrobial infection.
RESUMO
Importance: Given the high risk of thrombosis and anticoagulation-related bleeding in patients with hypoxemic COVID-19 pneumonia, identifying the lowest effective dose of anticoagulation therapy for these patients is imperative. Objectives: To determine whether therapeutic anticoagulation (TA) or high-dose prophylactic anticoagulation (HD-PA) decreases mortality and/or disease duration compared with standard-dose prophylactic anticoagulation (SD-PA), and whether TA outperforms HD-PA; and to compare the net clinical outcomes among the 3 strategies. Design, Settings, and Participants: The ANTICOVID randomized clinical open-label trial included patients with hypoxemic COVID-19 pneumonia requiring supplemental oxygen and having no initial thrombosis on chest computer tomography with pulmonary angiogram at 23 health centers in France from April 14 to December 13, 2021. Of 339 patients randomized, 334 were included in the primary analysis-114 patients in the SD-PA group, 110 in the HD-PA, and 110 in the TA. At randomization, 90% of the patients were in the intensive care unit. Data analyses were performed from April 13, 2022, to January 3, 2023. Interventions: Patients were randomly assigned (1:1:1) to receive either SD-PA, HD-PA, or TA with low-molecular-weight or unfractionated heparin for 14 days. Main Outcomes and Measures: A hierarchical criterion of all-cause mortality followed by time to clinical improvement at day 28. Main secondary outcome was net clinical outcome at day 28 (composite of thrombosis, major bleeding, and all-cause death). Results: Among the study population of 334 individuals (mean [SD] age, 58.3 [13.0] years; 226 [67.7%] men and 108 [32.3%] women), use of HD-PA and SD-PA had similar probabilities of favorable outcome (47.3% [95% CI, 39.9% to 54.8%] vs 52.7% [95% CI, 45.2% to 60.1%]; P = .48), as did TA compared with SD-PA (50.9% [95% CI, 43.4% to 58.3%] vs 49.1% [95% CI, 41.7% to 56.6%]; P = .82) and TA compared with HD-PA (53.5% [95% CI 45.8% to 60.9%] vs 46.5% [95% CI, 39.1% to 54.2%]; P = .37). Net clinical outcome was met in 29.8% of patients receiving SD-PA (20.2% thrombosis, 2.6% bleeding, 14.0% death), 16.4% receiving HD-PA (5.5% thrombosis, 3.6% bleeding, 11.8% death), and 20.0% receiving TA (5.5% thrombosis, 3.6% bleeding, 12.7% death). Moreover, HD-PA and TA use significantly reduced thrombosis compared with SD-PA (absolute difference, -14.7 [95% CI -6.2 to -23.2] and -14.7 [95% CI -6.2 to -23.2], respectively). Use of HD-PA significantly reduced net clinical outcome compared with SD-PA (absolute difference, -13.5; 95% CI -2.6 to -24.3). Conclusions and Relevance: This randomized clinical trial found that compared with SD-PA, neither HD-PA nor TA use improved the primary hierarchical outcome of all-cause mortality or time to clinical improvement in patients with hypoxemic COVID-19 pneumonia; however, HD-PA resulted in significantly better net clinical outcome by decreasing the risk of de novo thrombosis. Trial Registration: ClinicalTrials.gov Identifier: NCT04808882.
Assuntos
COVID-19 , Trombose , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , COVID-19/complicações , Heparina/administração & dosagem , Hemorragia/induzido quimicamente , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Trombose/induzido quimicamente , Anticoagulantes/efeitos adversosRESUMO
Studies of both vertebrates and invertebrates have suggested that specialists, as compared to generalists, are likely to suffer more serious declines in response to environmental change. Less is known about the effects of environmental conditions on specialist versus generalist parasites. Here, we study the evolutionary strategies of malaria parasites (Plasmodium spp.) among different bird host communities. We determined the parasite diversity and prevalence of avian malaria in three bird communities in the lowland forests in Cameroon, highland forests in East Africa and fynbos in South Africa. We calculated the host specificity index of parasites to examine the range of hosts parasitized as a function of the habitat and investigated the phylogenetic relationships of parasites. First, using phylogenetic and ancestral reconstruction analyses, we found an evolutionary tendency for generalist malaria parasites to become specialists. The transition rate at which generalists become specialists was nearly four times as great as the rate at which specialists become generalists. We also found more specialist parasites and greater parasite diversity in African lowland rainforests as compared to the more climatically variable habitats of the fynbos and the highland forests. Thus, with environmental changes, we anticipate a change in the distribution of both specialist and generalist parasites with potential impacts on bird communities.