Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 81(24): 4994-5006.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919819

RESUMO

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.


Assuntos
Dano ao DNA , DNA/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Células Cultivadas , DNA/genética , DNA/ultraestrutura , Fibroblastos/enzimologia , Humanos , Camundongos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
2.
Artigo em Inglês | MEDLINE | ID: mdl-37691443

RESUMO

Healthcare providers are at high risk of occupational burnout, which has negative implications on the individual, their profession, the organisation and their patients. Psychologists are particularly susceptible to the repercussions of burnout due to the emotionally draining nature and content of their work. However, research has failed to outline and evaluate effective interventions for burnout within the profession. This study aimed to investigate the treatment effectiveness of burnout through a systematic literature review. Systematic searches of four databases using Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines were conducted. A total of 4832 articles were identified, and 15 were included in the final analysis. The search was limited to scholarly and peer-reviewed journals published in the English language, which measured and utilised a form of intervention for the treatment of burnout or stress and included participants within the psychology profession. Interventions identified included mindfulness, training courses, self-care and other therapy-based forms of interventions. Approximately 60% of study participants reported moderate to high levels of stress. Interventions were largely variable in modality, frequency and duration of sessions and follow-up period. Of the 15 studies included within the review, only four measured burnout as an outcome variable, while the others measured stress. Findings of this systematic review indicate that mindfulness-based interventions may be a starting point for reducing stress; however, the most effective intervention for psychologists who have reached burnout is largely unclear. It is recommended that future studies focus on the identification and measurement of burnout, are more rigorously designed and reported and consider peer-based online support approaches.

3.
Hum Mol Genet ; 29(5): 859-863, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31943001

RESUMO

Autoimmune vitiligo is a complex disease involving polygenic risk from at least 50 loci previously identified by genome-wide association studies. The objectives of this study were to estimate and compare vitiligo heritability in European-derived patients using both family-based and 'deep imputation' genotype-based approaches. We estimated family-based heritability (h2FAM) by vitiligo recurrence among a total 8034 first-degree relatives (3776 siblings, 4258 parents or offspring) of 2122 unrelated vitiligo probands. We estimated genotype-based heritability (h2SNP) by deep imputation to Haplotype Reference Consortium and the 1000 Genomes Project data in unrelated 2812 vitiligo cases and 37 079 controls genotyped genome wide, achieving high-quality imputation from markers with minor allele frequency (MAF) as low as 0.0001. Heritability estimated by both approaches was exceedingly high; h2FAM = 0.75-0.83 and h2SNP = 0.78. These estimates are statistically identical, indicating there is essentially no remaining 'missing heritability' for vitiligo. Overall, ~70% of h2SNP is represented by common variants (MAF > 0.01) and 30% by rare variants. These results demonstrate that essentially all vitiligo heritable risk is captured by array-based genotyping and deep imputation. These findings suggest that vitiligo may provide a particularly tractable model for investigation of complex disease genetic architecture and predictive aspects of personalized medicine.


Assuntos
Doenças Autoimunes/genética , Predisposição Genética para Doença , Haplótipos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Vitiligo/genética , Aprendizado Profundo , Família , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Fatores de Risco
4.
Am J Hum Genet ; 105(2): 364-372, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327509

RESUMO

Vitiligo is an autoimmune disease that results in patches of depigmented skin and hair. Previous genome-wide association studies (GWASs) of vitiligo have identified 50 susceptibility loci. Variants at the associated loci are generally common and have individually small effects on risk. Most vitiligo cases are "simplex," where there is no family history of vitiligo, though occasional family clustering of vitiligo occurs, and some "multiplex" families report numerous close affected relatives. Here, we investigate whether simplex and multiplex vitiligo comprise different disease subtypes with different underlying genetic etiologies. We developed and compared the performance of several different vitiligo polygenic risk scores derived from GWAS data. By using the best-performing risk score, we find increased polygenic burden of risk alleles identified by GWAS in multiplex vitiligo cases relative to simplex cases. We additionally find evidence of polygenic transmission of common, low-effect-size risk alleles within multiplex-vitiligo-affected families. Our findings strongly suggest that family clustering of vitiligo involves a high burden of the same common, low-effect-size variants that are relevant in simplex cases. We furthermore find that a variant within the major histocompatibility complex (MHC) class II region contributes disproportionately more to risk in multiplex vitiligo cases than in simplex cases, supporting a special role for adaptive immune triggering in the etiology of multiplex cases. We suggest that genetic risk scores can be a useful tool in analyzing the genetic architecture of clinical disease subtypes and identifying subjects with unusual etiologies for further investigation.


Assuntos
Doenças Autoimunes/patologia , Genes/genética , Predisposição Genética para Doença , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Vitiligo/patologia , Alelos , Doenças Autoimunes/genética , Estudos de Casos e Controles , Família , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Fatores de Risco , Vitiligo/genética
5.
Nat Genet ; 56(8): 1592-1596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103650

RESUMO

Coronavirus disease 2019 (COVID-19) and influenza are respiratory illnesses caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share symptoms and clinical risk factors1, but the extent to which these conditions have a common genetic etiology is unknown. This is partly because host genetic risk factors are well characterized for COVID-19 but not for influenza, with the largest published genome-wide association studies for these conditions including >2 million individuals2 and about 1,000 individuals3-6, respectively. Shared genetic risk factors could point to targets to prevent or treat both infections. Through a genetic study of 18,334 cases with a positive test for influenza and 276,295 controls, we show that published COVID-19 risk variants are not associated with influenza. Furthermore, we discovered and replicated an association between influenza infection and noncoding variants in B3GALT5 and ST6GAL1, neither of which was associated with COVID-19. In vitro small interfering RNA knockdown of ST6GAL1-an enzyme that adds sialic acid to the cell surface, which is used for viral entry-reduced influenza infectivity by 57%. These results mirror the observation that variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against COVID-19 (ref. 7). Collectively, these findings highlight downregulation of key cell surface receptors used for viral entry as treatment opportunities to prevent COVID-19 and influenza.


Assuntos
COVID-19 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Influenza Humana , SARS-CoV-2 , Humanos , Influenza Humana/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , COVID-19/genética , COVID-19/virologia , Fatores de Risco , SARS-CoV-2/genética , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Pessoa de Meia-Idade
6.
BMJ Open ; 12(10): e049657, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223959

RESUMO

OBJECTIVES: The enormous toll of the COVID-19 pandemic has heightened the urgency of collecting and analysing population-scale datasets in real time to monitor and better understand the evolving pandemic. The objectives of this study were to examine the relationship of risk factors to COVID-19 susceptibility and severity and to develop risk models to accurately predict COVID-19 outcomes using rapidly obtained self-reported data. DESIGN: A cross-sectional study. SETTING: AncestryDNA customers in the USA who consented to research. PARTICIPANTS: The AncestryDNA COVID-19 Study collected self-reported survey data on symptoms, outcomes, risk factors and exposures for over 563 000 adult individuals in the USA in just under 4 months, including over 4700 COVID-19 cases as measured by a self-reported positive test. RESULTS: We replicated previously reported associations between several risk factors and COVID-19 susceptibility and severity outcomes, and additionally found that differences in known exposures accounted for many of the susceptibility associations. A notable exception was elevated susceptibility for men even after adjusting for known exposures and age (adjusted OR=1.36, 95% CI=1.19 to 1.55). We also demonstrated that self-reported data can be used to build accurate risk models to predict individualised COVID-19 susceptibility (area under the curve (AUC)=0.84) and severity outcomes including hospitalisation and critical illness (AUC=0.87 and 0.90, respectively). The risk models achieved robust discriminative performance across different age, sex and genetic ancestry groups within the study. CONCLUSIONS: The results highlight the value of self-reported epidemiological data to rapidly provide public health insights into the evolving COVID-19 pandemic.


Assuntos
COVID-19 , Adulto , COVID-19/epidemiologia , Estudos Transversais , Humanos , Masculino , Pandemias , Fatores de Risco , SARS-CoV-2
7.
Nat Genet ; 54(4): 374-381, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35410379

RESUMO

Multiple COVID-19 genome-wide association studies (GWASs) have identified reproducible genetic associations indicating that there is a genetic component to susceptibility and severity risk. To complement these studies, we collected deep coronavirus disease 2019 (COVID-19) phenotype data from a survey of 736,723 AncestryDNA research participants. With these data, we defined eight phenotypes related to COVID-19 outcomes: four phenotypes that align with previously studied COVID-19 definitions and four 'expanded' phenotypes that focus on susceptibility given exposure, mild clinical manifestations and an aggregate score of symptom severity. We performed a replication analysis of 12 previously reported COVID-19 genetic associations with all eight phenotypes in a trans-ancestry meta-analysis of AncestryDNA research participants. In this analysis, we show distinct patterns of association at the 12 loci with the eight outcomes that we assessed. We also performed a genome-wide discovery analysis of all eight phenotypes, which did not yield new genome-wide significant loci but did suggest that three of the four 'expanded' COVID-19 phenotypes have enhanced power to capture protective genetic associations relative to the previously studied phenotypes. Thus, we conclude that continued large-scale ascertainment of deep COVID-19 phenotype data would likely represent a boon for COVID-19 therapeutic target identification.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/genética , Predisposição Genética para Doença , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
8.
Nat Genet ; 54(4): 382-392, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35241825

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco , SARS-CoV-2/genética
9.
Nat Commun ; 12(1): 736, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531508

RESUMO

Poly-(ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) are key enzymes in the DNA damage response. Four different inhibitors (PARPi) are currently in the clinic for treatment of ovarian and breast cancer. Recently, histone PARylation Factor 1 (HPF1) has been shown to play an essential role in the PARP1- and PARP2-dependent poly-(ADP-ribosylation) (PARylation) of histones, by forming a complex with both enzymes and altering their catalytic properties. Given the proximity of HPF1 to the inhibitor binding site both PARPs, we hypothesized that HPF1 may modulate the affinity of inhibitors toward PARP1 and/or PARP2. Here we demonstrate that HPF1 significantly increases the affinity for a PARP1 - DNA complex of some PARPi (i.e., olaparib), but not others (i.e., veliparib). This effect of HPF1 on the binding affinity of Olaparib also holds true for the more physiologically relevant PARP1 - nucleosome complex but does not extend to PARP2. Our results have important implications for the interpretation of PARP inhibition by current PARPi as well as for the design and analysis of the next generation of clinically relevant PARP inhibitors.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Sítios de Ligação , Proteínas de Transporte/genética , Catálise/efeitos dos fármacos , Domínio Catalítico , Enzimas Reparadoras do DNA/genética , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Proteínas Nucleares/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Ligação Proteica/efeitos dos fármacos
10.
Elife ; 102021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683197

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is an important player in the response to DNA damage. Recently, Histone PARylation Factor (HPF1) was shown to be a critical modulator of the activity of PARP1 by facilitating PARylation of histones and redirecting the target amino acid specificity from acidic to serine residues. Here, we investigate the mechanism and specific consequences of HPF1-mediated PARylation using nucleosomes as both activators and substrates for PARP1. HPF1 provides that catalytic base Glu284 to substantially redirect PARylation by PARP1 such that the histones in nucleosomes become the primary recipients of PAR chains. Surprisingly, HPF1 partitions most of the reaction product to free ADP-ribose (ADPR), resulting in much shorter PAR chains compared to reactions in the absence of HPF1. This HPF1-mediated switch from polymerase to hydrolase has important implications for the PARP1-mediated response to DNA damage and raises interesting new questions about the role of intracellular ADPR and depletion of NAD+.


Assuntos
Proteínas de Transporte , Hidrolases , Proteínas Nucleares , Nucleossomos , Poli(ADP-Ribose) Polimerase-1 , Poli ADP Ribosilação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
11.
Pigment Cell Melanoma Res ; 33(1): 8-15, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743585

RESUMO

Vitiligo is an autoimmune disease in which destruction of skin melanocytes results in patches of white skin and hair. Genome-wide linkage studies and genome-wide association studies in European ancestry cases identified over 50 vitiligo susceptibility loci, defining a model of melanocyte-directed autoimmunity. Vitiligo heritability is exceedingly high, ~2/3 coming from common and ~1/3 from rare genomic variants; ~20% of vitiligo risk is environmental. Vitiligo genetic risk is polygenic, with greater additive risk in multiplex vitiligo families than simplex cases. Vitiligo age-of-onset is bimodal, also involving a major genetic component; a MHC enhancer haplotype confers extreme risk for vitiligo (OR 8.1) and early disease onset, increasing expression of HLA-DQB1 mRNA and HLA-DQ protein and thus perhaps facilitating presentation of triggering antigens. Vitiligo triggering also involves a major environmental component; dramatic delay in vitiligo age-of-onset, especially from 1973 to 2004, suggests that exposure or response to a key vitiligo environmental trigger diminished during this period. Together, these findings provide deep understanding of vitiligo pathogenesis and genetic architecture, suggesting that vitiligo represents a tractable model for investigating complex disease genetic architecture and predictive aspects of personalized medicine.


Assuntos
Predisposição Genética para Doença , Vitiligo/genética , Idade de Início , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Fatores de Risco
12.
PLoS One ; 15(11): e0240932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33141820

RESUMO

Poly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Microscopia Crioeletrônica , Humanos , Técnicas In Vitro , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Mutação Puntual , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Nat Commun ; 10(1): 391, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674883

RESUMO

Vitiligo is an autoimmune disease in which melanocyte destruction causes skin depigmentation, with 49 loci known from previous GWAS. Aiming to define vitiligo subtypes, we discovered that age-of-onset is bimodal; one-third of cases have early onset (mean 10.3 years) and two-thirds later onset (mean 34.0 years). In the early-onset subgroup we found novel association with MHC class II region indel rs145954018, and independent association with the principal MHC class II locus from previous GWAS, represented by rs9271597; greatest association was with rs145954018del-rs9271597A haplotype (P = 2.40 × 10-86, OR = 8.10). Both rs145954018 and rs9271597 are located within lymphoid-specific enhancers, and the rs145954018del-rs9271597A haplotype is specifically associated with increased expression of HLA-DQB1 mRNA and HLA-DQ protein by monocytes and dendritic cells. Thus, for vitiligo, MHC regulatory variation confers extreme risk, more important than HLA coding variation. MHC regulatory variation may represent a significant component of genetic risk for other autoimmune diseases.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Genes MHC da Classe II/imunologia , Predisposição Genética para Doença , Haplótipos/imunologia , Vitiligo/genética , Vitiligo/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Células Dendríticas , Feminino , Regulação da Expressão Gênica/genética , Genes MHC da Classe II/genética , Loci Gênicos , Genótipo , Antígenos HLA-DQ/metabolismo , Cadeias beta de HLA-DQ/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Monócitos , Fenótipo , RNA Mensageiro/metabolismo , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA