Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(9): 101695, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39173635

RESUMO

Matrix stiffening by lysyl oxidase-like 2 (LOXL2)-mediated collagen cross-linking is proposed as a core feedforward mechanism that promotes fibrogenesis. Failure in clinical trials of simtuzumab (the humanized version of AB0023, a monoclonal antibody against human LOXL2) suggested that targeting LOXL2 may not have disease relevance; however, target engagement was not directly evaluated. We compare the spatial transcriptome of active human lung fibrogenesis sites with different human cell culture models to identify a disease-relevant model. Within the selected model, we then evaluate AB0023, identifying that it does not inhibit collagen cross-linking or reduce tissue stiffness, nor does it inhibit LOXL2 catalytic activity. In contrast, it does potently inhibit angiogenesis consistent with an alternative, non-enzymatic mechanism of action. Thus, AB0023 is anti-angiogenic but does not inhibit LOXL2 catalytic activity, collagen cross-linking, or tissue stiffening. These findings have implications for the interpretation of the lack of efficacy of simtuzumab in clinical trials of fibrotic diseases.


Assuntos
Aminoácido Oxirredutases , Fibrose , Transcriptoma , Humanos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Transcriptoma/genética , Colágeno/metabolismo , Biomimética/métodos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Modelos Biológicos
2.
Optica ; 8(5): 674-685, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34239949

RESUMO

Superresolution (SR) optical microscopy has allowed the investigation of many biological structures below the diffraction limit; however, most of the techniques are hampered by the need for fluorescent labels. Nonlinear label-free techniques such as second-harmonic generation (SHG) provide structurally specific contrast without the addition of exogenous labels, allowing observation of unperturbed biological systems. We use the photonic nanojet (PNJ) phenomena to achieve SR-SHG. A resolution of ∼ λ / 6 with respect to the fundamental wavelength, that is, a ∼ 2.3 -fold improvement over conventional or diffraction-limited SHG under the same imaging conditions is achieved. Crucially we find that the polarization properties of excitation are maintained in a PNJ. This is observed in experiment and simulations. This may have widespread implications to increase sensitivity by detection of polarization-resolved SHG by observing anisotropy in signals. These new, to the best of our knowledge, findings allowed us to visualize biological SHG-active structures such as collagen at an unprecedented and previously unresolvable spatial scale. Moreover, we demonstrate that the use of an array of self-assembled high-index spheres overcomes the issue of a limited field of view for such a method, allowing PNJ-assisted SR-SHG to be used over a large area. Dysregulation of collagen at the nanoscale occurs in many diseases and is an underlying cause in diseases such as lung fibrosis. Here we demonstrate that pSR-SHG allows unprecedented observation of changes at the nanoscale that are invisible by conventional diffraction-limited SHG imaging. The ability to nondestructively image SHG-active biological structures without labels at the nanoscale with a relatively simple optical method heralds the promise of a new tool to understand biological phenomena and drive drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA