Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 85: 199-214, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25201196

RESUMO

The E3 ubiquitin ligase Mdm2 regulates two transcription factors, p53 and HIF1α, which appear to be tailored towards different and specific roles within the cell, the DNA damage and hypoxia responses, respectively. However, evidence increasingly points towards the interplay between these factors being crucial for the regulation of cellular metabolism and survival in times of oxygen stress, which has particular relevance for tumour formation. Mdm2, p53 and HIF1α all respond to hypoxia, and intriguingly, have distinct roles depending on the level of hypoxia. The data from numerous studies across different conditions hint at the interplay between these key factors in cellular homeostasis. Here we try to weave these strands together, to create a picture of the complex tapestry of interactions that demonstrates the importance of the crosstalk between these key regulatory proteins during hypoxia.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima
2.
J Cell Sci ; 125(Pt 14): 3320-32, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22505606

RESUMO

Previously we showed that spatial and developmental modulation of ARNT (HIF1ß) expression in mouse epidermis is essential for maintenance of keratinocyte differentiation, proper formation of the barrier and normal desquamation. Here, using lentiviral suppression or induction of ARNT in TERT-immortalized (N-TERT) and HaCaT cells we assessed the nature and mechanisms of ARNT involvement in control of differentiation in human epidermal keratinocytes. ARNT depletion did not affect the levels of basal keratins K5 and K14, but significantly induced expression of several key differentiation markers (an effect abolished by EGF supplementation). Furthermore, ARNT deficiency resulted in the downregulation of amphiregulin (AREG) - the most highly expressed EGFR ligand in human keratinocytes - whereas upregulation of ARNT showed the opposite. In ARNT-deficient monolayer cultures and 3D epidermal equivalents, the downregulation of AREG was concurrent with a decline of EGFR and ERK1/2 phosphorylation. TSA, a potent suppressor of HDAC activity, abolished the effects of ARNT deficiency, implying a role for HDACs in ARNT-dependent modulation of the AREG-EGFR pathway and downstream epidermal genes. Total HDAC activity was significantly increased in ARNT-depleted cells and decreased with ARNT overexpression. ARNT-dependent shifts in HDAC activity were specifically attributed to significant changes in the levels of HDAC1, HDAC2 and HDAC3 proteins (but not mRNA) in both monolayer and 3D cultures. Collectively, our results suggest that ARNT controls AREG expression and the downstream EGFR-ERK pathway in keratinocytes, at least in part, by modulating HDAC activity. This novel regulatory pathway targeting advanced stages of epidermal differentiation might have important implications for skin pathology such as psoriasis, atopic dermatitis and cancer.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/biossíntese , Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Células Epidérmicas , Receptores ErbB/genética , Expressão Gênica , Humanos , Queratinas/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais
3.
J Cell Sci ; 123(Pt 7): 1015-9, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20197407

RESUMO

Peripheral nuclear localization of chromosomal loci correlates with late replication in yeast and metazoan cells. To test whether peripheral positioning can impose late replication, we examined whether artificial tethering of an early-initiating replication origin to the nuclear periphery delays its replication in budding yeast. We tested the effects of three different peripheral tethering constructs on the time of replication of the early replication origin ARS607. Using the dense-isotope transfer method to assess replication time, we found that ARS607 still replicates early when tethered to the nuclear periphery using the Yif1 protein or a fragment of Sir4, whereas tethering using a Yku80 construct produces only a very slight replication delay. Single-cell microscopic analysis revealed no correlation between peripheral positioning of ARS607 in individual cells and delayed replication. Overall, our results demonstrate that a replication origin can initiate replication early in S phase, even if artificially relocated to the nuclear periphery.


Assuntos
Núcleo Celular/genética , Complexo de Golgi/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Origem de Replicação/genética , Saccharomycetales/genética , Proteínas Adaptadoras de Transporte Vesicular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Replicação do DNA , DNA Fúngico/análise , Proteínas de Ligação a DNA/genética , Microscopia , Engenharia de Proteínas , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
4.
PLoS One ; 9(11): e113050, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401928

RESUMO

The molecular response to hypoxia is a critical cellular process implicated in cancer, and a target for drug development. The activity of the major player, HIF1α, is regulated at different levels by various factors, including the transcription factor ELK3. The molecular mechanisms of this intimate connection remain largely unknown. Whilst investigating global ELK3-chromatin interactions, we uncovered an unexpected connection that involves the microRNA hsa-miR-155-5p, a hypoxia-inducible oncomir that targets HIF1α. One of the ELK3 chromatin binding sites, detected by Chromatin Immuno-Precipitation Sequencing (ChIP-seq) of normal Human Umbilical Vein Endothelial Cells (HUVEC), is located at the transcription start site of the MIR155HG genes that expresses hsa-miR-155-5p. We confirmed that ELK3 binds to this promoter by ChIP and quantitative polymerase chain reaction (QPCR). We showed that ELK3 and hsa-miR-155-5p form a double-negative regulatory loop, in that ELK3 depletion induced hsa-miR-155-5p expression and hsa-miR-155-5p expression decreased ELK3 expression at the RNA level through a conserved target sequence in its 3'-UTR. We further showed that the activities of hsa-miR-155-5p and ELK3 are functionally linked. Pathway analysis indicates that both factors are implicated in related processes, including cancer and angiogenesis. Hsa-miR-155-5p expression and ELK3 depletion have similar effects on expression of known ELK3 target genes, and on in-vitro angiogenesis and wound closure. Bioinformatic analysis of cancer RNA-seq data shows that hsa-miR-155-5p and ELK3 expression are significantly anti-correlated, as would be expected from hsa-miR-155-5p targeting ELK3 RNA. Finally, hypoxia (0% oxygen) down-regulates ELK3 mRNA in a microRNA and hsa-miR-155-5p dependent manner. These results tie ELK3 into the hypoxia response pathway through an oncogenic microRNA and into a circuit implicated in the dynamics of the hypoxic response. This crosstalk could be important for the development of new treatments for a range of pathologies.


Assuntos
Hipóxia/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , MicroRNAs/química , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets , RNA Mensageiro/química , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo
5.
Mol Biol Cell ; 22(10): 1753-65, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21441303

RESUMO

DNA replication in Saccharomyces cerevisiae proceeds according to a temporal program. We have investigated the role of the telomere-binding Ku complex in specifying late replication of telomere-proximal sequences. Genome-wide analysis shows that regions extending up to 80 kb from telomeres replicate abnormally early in a yku70 mutant. We find that Ku does not appear to regulate replication time by binding replication origins directly, nor is its effect on telomere replication timing mediated by histone tail acetylation. We show that Ku instead regulates replication timing through its effect on telomere length, because deletion of the telomerase regulator Pif1 largely reverses the short telomere defect of a yku70 mutant and simultaneously rescues its replication timing defect. Consistent with this conclusion, deleting the genome integrity component Elg1 partially rescued both length and replication timing of yku70 telomeres. Telomere length-mediated control of replication timing requires the TG(1-3) repeat-counting component Rif1, because a rif1 mutant replicates telomeric regions early, despite having extended TG(1-3) tracts. Overall, our results suggest that the effect of Ku on telomere replication timing results from its impact on TG(1-3) repeat length and support a model in which Rif1 measures telomere repeat length to ensure that telomere replication timing is correctly programmed.


Assuntos
Acetiltransferases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Telômero/metabolismo , Acetilação , Sequência de Bases , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Tempo
6.
EMBO J ; 25(7): 1505-14, 2006 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-16525505

RESUMO

Chromosome ends in Saccharomyces cerevisiae are positioned in clusters at the nuclear rim. We report that Ctf18, Ctf8, and Dcc1, the subunits of a Replication Factor C (RFC)-like complex, are essential for the perinuclear positioning of telomeres. In both yeast and mammalian cells, peripheral nuclear positioning of chromatin during G1 phase correlates with late DNA replication. We find that the mislocalized telomeres of ctf18 cells still replicate late, showing that late DNA replication does not require peripheral positioning during G1. The Ku and Sir complexes have been shown to act through separate pathways to position telomeres, but in the absence of Ctf18 neither pathway can act fully to maintain telomere position. Surprisingly CTF18 is not required for Ku or Sir4-mediated peripheral tethering of a nontelomeric chromosome locus. Our results suggest that the Ctf18 RFC-like complex modifies telomeric chromatin to make it competent for normal localization to the nuclear periphery.


Assuntos
Replicação do DNA , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Telômero/fisiologia , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Proteína de Replicação C/genética , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA