Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(14): 8060-8077, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289068

RESUMO

Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cromatina/genética , DNA Helicases/genética , Desenvolvimento Muscular/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adenosina Trifosfatases/genética , Animais , Compostos Azabicíclicos/farmacologia , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Histonas/genética , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Piridinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores
2.
STAR Protoc ; 2(3): 100751, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467227

RESUMO

Muscle stem cells (MuSCs) are a rare stem cell population that provides myofibers with a remarkable capacity to regenerate after tissue injury. Here, we have adapted the Cleavage Under Target and Tagmentation technology to the mapping of the chromatin landscape and transcription factor binding in 50,000 activated MuSCs isolated from injured mouse hindlimb muscles. We have applied this same approach to human CD34+ hematopoietic stem and progenitor cells. This protocol could be adapted to any rare stem cell population. For complete details on the use and execution of this protocol, please refer to Robinson et al. (2021).


Assuntos
Cromatina/genética , Biologia Molecular/métodos , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Cardiotoxinas/administração & dosagem , Cromatina/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Histonas/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Biologia Molecular/instrumentação , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Reação em Cadeia da Polimerase , Células-Tronco/citologia , Fatores de Transcrição/genética
3.
Dev Cell ; 56(7): 1014-1029.e7, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33735618

RESUMO

Negative elongation factor (NELF) is a critical transcriptional regulator that stabilizes paused RNA polymerase to permit rapid gene expression changes in response to environmental cues. Although NELF is essential for embryonic development, its role in adult stem cells remains unclear. In this study, through a muscle-stem-cell-specific deletion, we showed that NELF is required for efficient muscle regeneration and stem cell pool replenishment. In mechanistic studies using PRO-seq, single-cell trajectory analyses and myofiber cultures revealed that NELF works at a specific stage of regeneration whereby it modulates p53 signaling to permit massive expansion of muscle progenitors. Strikingly, transplantation experiments indicated that these progenitors are also necessary for stem cell pool repopulation, implying that they are able to return to quiescence. Thus, we identified a critical role for NELF in the expansion of muscle progenitors in response to injury and revealed that progenitors returning to quiescence are major contributors to the stem cell pool repopulation.


Assuntos
Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas do Olho/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular , Fatores de Crescimento Neural/metabolismo , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Serpinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
4.
Curr Top Dev Biol ; 126: 235-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29305001

RESUMO

Skeletal muscle regeneration is an efficient stem cell-based repair system that ensures healthy musculature. For this repair system to function continuously throughout life, muscle stem cells must contribute to the process of myofiber repair as well as repopulation of the stem cell niche. The decision made by the muscle stem cells to commit to the muscle repair or to remain a stem cell depends upon patterns of gene expression, a process regulated at the epigenetic level. Indeed, it is well accepted that dynamic changes in epigenetic landscapes to control DNA accessibility and expression is a critical component during myogenesis for the effective repair of damaged muscle. Changes in the epigenetic landscape are governed by various posttranslational histone tail modifications, nucleosome repositioning, and DNA methylation events which collectively allow the control of changes in transcription networks during transitions of satellite cells from a dormant quiescent state toward terminal differentiation. This chapter focuses upon the specific epigenetic changes that occur during muscle stem cell-mediated regeneration to ensure myofiber repair and continuity of the stem cell compartment. Furthermore, we explore open questions in the field that are expected to be important areas of exploration as we move toward a more thorough understanding of the epigenetic mechanism regulating muscle regeneration.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/metabolismo , Adulto , Animais , Diferenciação Celular/genética , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA