Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 70, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024989

RESUMO

BACKGROUND: Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS: SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS: Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION: Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.


Assuntos
Adipócitos , Tecido Adiposo Marrom , Diferenciação Celular , Leptina , Leptina/metabolismo , Organoides , Insulina/farmacologia , Animais , Camundongos , Tecido Adiposo Marrom/citologia , Rosiglitazona/farmacologia , Células Cultivadas , Animais Recém-Nascidos , Imunofenotipagem , Osteogênese , Condrogênese , Adipócitos/ultraestrutura , Lipólise , Cultura Primária de Células
2.
Neurobiol Dis ; 41(1): 209-18, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20883783

RESUMO

Niemann-Pick type C (NPC) is a neurodegenerative disease characterized by the intralysosomal accumulation of cholesterol leading to neuronal apoptosis. We have previously reported the activation of the c-Abl/p73 proapoptotic pathway in the cerebellum of NPC mice; however, upstream signals underlying the engagement of this pathway remain unknown. Here, we investigate the possible role of oxidative stress in the activation of c-Abl/p73 using different in vitro and in vivo NPC models. Our results indicate a close temporal correlation between the appearance of nitrotyrosine (N-Tyr; a post-translational tyrosine modification caused by oxidative stress) and the activation of c-Abl/p73 in NPC models. To test the functional role of oxidative stress in NPC, we have treated NPC neurons with the antioxidant NAC and observed a dramatic decrease of c-Abl/p73 activation and a reduction in the levels of apoptosis in NPC models. In conclusion, our data suggest that oxidative stress is the main upstream stimulus activating the c-Abl/p73 pathway and neuronal apoptosis in NPC neurons.


Assuntos
Apoptose/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Proteínas Nucleares/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-abl/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Regulação para Cima/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/patologia , Doença de Niemann-Pick Tipo C/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Neurodegener Dis ; 8(3): 124-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20714112

RESUMO

BACKGROUND: Niemann-Pick type C (NPC) disease is a fatal lysosomal storage disease related to progressive neurodegeneration secondary to abnormal intracellular accumulation of cholesterol. Signs of endoplasmic reticulum (ER) stress have been reported in other lipidoses. Adaptation to ER stress is mediated by the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates stress or triggers apoptosis of irreversibly damaged cells. OBJECTIVE: To investigate the possible engagement of ER stress responses in NPC models. METHODS: We used NPC1 deficient mice and an NPC cell-based model by knocking down the expression of NPC1 to measure several UPR markers through different approaches. RESULTS: Despite expectations that the UPR will be activated in NPC, our results indicate a lack of ER stress reactions in the cerebellum of symptomatic mice. Similarly, knocking down NPC1 in Neuro2a cells leads to clear cholesterol accumulation without evidence of UPR activation. CONCLUSION: Our results suggest that cholesterol overload and neuronal dysfunction in NPC is not associated with ER stress, which contrasts with recent reports suggesting the activation of the UPR in other lysosomal storage diseases.


Assuntos
Retículo Endoplasmático/fisiologia , Doença de Niemann-Pick Tipo C/fisiopatologia , Proteínas/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/fisiologia , Cerebelo/metabolismo , Cerebelo/patologia , Colesterol/metabolismo , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , Proteínas/genética , Transdução de Sinais/fisiologia
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(9): 166167, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989739

RESUMO

BACKGROUND: Adipocytes from lipodystrophic Agpat2-/- mice have impaired adipogenesis and fewer caveolae. Herein, we examined whether these defects are associated with changes in lipid composition or abnormal levels of caveolae-associated proteins. Lipidome changes were quantified in differentiated Agpat2-/- adipocytes to identify lipids with potential adipogenic roles. METHODS: Agpat2-/- and wild type brown preadipocytes were differentiated in vitro. Plasma membrane was purified by ultracentrifugation. Number of caveolae and caveolae-associated proteins, as well as sterol, sphingolipid, and phospholipid lipidome were determined across differentiation. RESULTS: Differentiated Agpat2-/- adipocytes had decreased caveolae number but conserved insulin signaling. Caveolin-1 and cavin-1 levels were equivalent between Agpat2-/- and wild type adipocytes. No differences in PM cholesterol and sphingolipids abundance were detected between genotypes. Levels of phosphatidylserine at day 10 of differentiation were increased in Agpat2-/- adipocytes. Wild type adipocytes had increased whole cell triglyceride, diacylglycerol, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, and trihexosyl ceramide, and decreased 24,25-dihydrolanosterol and sitosterol, as a result of adipogenic differentiation. By contrast, adipogenesis did not modify whole cell neutral lipids but increased lysophosphatidylcholine, sphingomyelin, and trihexosyl ceramide levels in Agpat2-/- adipocytes. Unexpectedly, adipogenesis decreased PM levels of main phospholipids in both genotypes. CONCLUSION: In Agpat2-/- adipocytes, decreased caveolae is not associated with changes in PM cholesterol nor sphingolipid levels; however, increased PM phosphatidylserine content may be implicated. Abnormal lipid composition is associated with the adipogenic abnormalities of Agpat2 -/- adipocytes but does not prevent insulin signaling.


Assuntos
Aciltransferases/metabolismo , Adipócitos/metabolismo , Adipogenia/fisiologia , Cavéolas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Esfingolipídeos/metabolismo , Animais , Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipidômica/métodos , Lipídeos/fisiologia , Camundongos , Transdução de Sinais/fisiologia
5.
Metabolism ; 111: 154341, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810486

RESUMO

BACKGROUND: Biallelic loss of function variants in AGPAT2, encoding 1-acylglycerol-3-phosphate O-acyltransferase 2, cause congenital generalized lipodystrophy type 1, a disease characterized by near total loss of white adipose tissue and metabolic complications. Agpat2 deficient (Agpat2-/-) mice completely lacks both white and interscapular brown adipose tissue (iBAT). The objective of the present study was to characterize the effects of AGPAT2 deficiency in brown adipocyte differentiation. METHODS: Preadipocytes obtained from newborn (P0.5) Agpat2-/- and wild type mice iBAT were differentiated into brown adipocytes, compared by RNA microarray, RT-qPCR, High-Content Screening (HCS), western blotting and electron microscopy. RESULTS: 1) Differentiated Agpat2-/- brown adipocytes have fewer lipid-laden cells and lower abundance of Pparγ, Pparα, C/ebpα and Pgc1α, both at the mRNA and protein levels, compared those to wild type cells. Prmd16 levels were equivalent in both, Agpat2-/- and wild type, while Ucp1 was only induced in wild type cells, 2) These differences were not due to lower abundance of preadipocytes, 3) Differentiated Agpat2-/- brown adipocytes are enriched in the mRNA abundance of genes participating in interferon (IFN) type I response, whereas genes involved in mitochondrial homeostasis were decreased, 4) Mitochondria in differentiated Agpat2-/- brown adipocytes had altered morphology and lower mass and contacting sites with lipid droplets concomitant with lower levels of Mitofusin 2 and Perlipin 5. CONCLUSION: AGPAT2 is necessary for normal brown adipose differentiation. Its absence results in a lower proportion of lipid-laden cells, increased expression of interferon-stimulated genes (ISGs) and alterations in mitochondrial morphology, mass and fewer mitochondria to lipid droplets contacting sites in differentiated brown adipocytes.


Assuntos
Aciltransferases/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Expressão Gênica/fisiologia , Interferon Tipo I/metabolismo , Mitocôndrias/metabolismo , Adipócitos Marrons/fisiologia , Tecido Adiposo Marrom/fisiologia , Animais , Diferenciação Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Homeostase/fisiologia , Camundongos , Mitocôndrias/fisiologia , RNA Mensageiro/metabolismo
6.
Biol Rev Camb Philos Soc ; 93(2): 1145-1164, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29230933

RESUMO

The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non-shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT.


Assuntos
Tecido Adiposo Marrom/fisiologia , Obesidade/patologia , Animais , Humanos , Obesidade/metabolismo , Obesidade/prevenção & controle
7.
PLoS One ; 10(3): e0118478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738495

RESUMO

BACKGROUND & AIMS: Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. METHODS: BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. RESULTS: XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. CONCLUSION: XGB increases BMR by TGR5-dependent mechanisms in mice.


Assuntos
Técnicas de Ablação , Metabolismo Basal , Colecistectomia , Vesícula Biliar/cirurgia , Receptores Acoplados a Proteínas G/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Ritmo Circadiano , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/deficiência
8.
PLoS One ; 6(12): e28777, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216111

RESUMO

BACKGROUND: Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+); WT) and homozygous-mutant (Npc1(-/-); NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.


Assuntos
Modelos Animais de Doenças , Perfilação da Expressão Gênica , Doença de Niemann-Pick Tipo C/genética , Estresse Oxidativo , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Proteínas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA