Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(20): 9925-9930, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31036654

RESUMO

Microbial capacity to metabolize arsenic is ancient, arising in response to its pervasive presence in the environment, which was largely in the form of As(III) in the early anoxic ocean. Many biological arsenic transformations are aimed at mitigating toxicity; however, some microorganisms can respire compounds of this redox-sensitive element to reap energetic gains. In several modern anoxic marine systems concentrations of As(V) are higher relative to As(III) than what would be expected from the thermodynamic equilibrium, but the mechanism for this discrepancy has remained unknown. Here we present evidence of a complete respiratory arsenic cycle, consisting of dissimilatory As(V) reduction and chemoautotrophic As(III) oxidation, in the pelagic ocean. We identified the presence of genes encoding both subunits of the respiratory arsenite oxidase AioA and the dissimilatory arsenate reductase ArrA in the Eastern Tropical North Pacific (ETNP) oxygen-deficient zone (ODZ). The presence of the dissimilatory arsenate reductase gene arrA was enriched on large particles (>30 um), similar to the forward bacterial dsrA gene of sulfate-reducing bacteria, which is involved in the cryptic cycling of sulfur in ODZs. Arsenic respiratory genes were expressed in metatranscriptomic libraries from the ETNP and the Eastern Tropical South Pacific (ETSP) ODZ, indicating arsenotrophy is a metabolic pathway actively utilized in anoxic marine water columns. Together these results suggest arsenic-based metabolisms support organic matter production and impact nitrogen biogeochemical cycling in modern oceans. In early anoxic oceans, especially during periods of high marine arsenic concentrations, they may have played a much larger role.


Assuntos
Anaerobiose , Organismos Aquáticos/metabolismo , Arsênio/metabolismo , Oxirredução , Microbiologia da Água , Organismos Aquáticos/genética , Metagenoma , Oceano Pacífico
2.
Environ Microbiol ; 23(6): 2782-2800, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32869473

RESUMO

Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.


Assuntos
Bacteriófagos , Prochlorococcus , Bacteriófagos/genética , Prochlorococcus/genética , Água
3.
Environ Microbiol ; 21(5): 1677-1686, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724442

RESUMO

Synechococcus, a genus of unicellular cyanobacteria found throughout the global surface ocean, is a large driver of Earth's carbon cycle. Developing a better understanding of its diversity and distributions is an ongoing effort in biological oceanography. Here, we introduce 12 new draft genomes of marine Synechococcus isolates spanning five clades and utilize ~100 environmental metagenomes largely sourced from the TARA Oceans project to assess the global distributions of the genomic lineages they and other reference genomes represent. We show that five newly provided clade-II isolates are by far the most representative of the recovered in situ populations (most 'abundant') and have biogeographic distributions distinct from previously available clade-II references. Additionally, these isolates form a subclade possessing the smallest genomes yet identified of the genus (2.14 ± 0.05Mbps; mean ± 1SD) while concurrently hosting some of the highest GC contents (60.67 ± 0.16%). This is in direct opposition to the pattern in Synechococcus's nearest relative, Prochlorococcus - wherein decreasing genome size has coincided with a strong decrease in GC content - suggesting this new subclade of Synechococcus appears to have convergently undergone genomic reduction relative to the rest of the genus, but along a fundamentally different evolutionary trajectory.


Assuntos
Evolução Molecular , Genoma Bacteriano , Água do Mar/microbiologia , Synechococcus/genética , Composição de Bases , Genômica , Metagenoma , Oceanos e Mares , Filogenia , Prochlorococcus/genética , Synechococcus/classificação , Synechococcus/isolamento & purificação , Synechococcus/metabolismo
4.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201678

RESUMO

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Assuntos
Núcleo Celular/genética , Cercozoários/genética , Criptófitas/genética , Evolução Molecular , Genoma/genética , Mosaicismo , Simbiose/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Processamento Alternativo/genética , Cercozoários/citologia , Cercozoários/metabolismo , Criptófitas/citologia , Criptófitas/metabolismo , Citosol/metabolismo , Duplicação Gênica/genética , Transferência Genética Horizontal/genética , Genes Essenciais/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
5.
Plant J ; 81(3): 519-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25438865

RESUMO

The plastids of ecologically and economically important algae from phyla such as stramenopiles, dinoflagellates and cryptophytes were acquired via a secondary endosymbiosis and are surrounded by three or four membranes. Nuclear-encoded plastid-localized proteins contain N-terminal bipartite targeting peptides with the conserved amino acid sequence motif 'ASAFAP'. Here we identify the plastid proteomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, using a customized prediction tool (ASAFind) that identifies nuclear-encoded plastid proteins in algae with secondary plastids of the red lineage based on the output of SignalP and the identification of conserved 'ASAFAP' motifs and transit peptides. We tested ASAFind against a large reference dataset of diatom proteins with experimentally confirmed subcellular localization and found that the tool accurately identified plastid-localized proteins with both high sensitivity and high specificity. To identify nucleus-encoded plastid proteins of T. pseudonana and P. tricornutum we generated optimized sets of gene models for both whole genomes, to increase the percentage of full-length proteins compared with previous assembly model sets. ASAFind applied to these optimized sets revealed that about 8% of the proteins encoded in their nuclear genomes were predicted to be plastid localized and therefore represent the putative plastid proteomes of these algae.


Assuntos
Diatomáceas/metabolismo , Proteínas/química , Proteoma , Motivos de Aminoácidos , Proteômica/métodos , Análise de Sequência de Proteína , Software
6.
BMC Genomics ; 15: 212, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24646409

RESUMO

BACKGROUND: Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. RESULTS: The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). CONCLUSIONS: Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.


Assuntos
Genoma , Estramenópilas/genética , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Sequência de Aminoácidos , Cloroplastos/genética , Genoma Mitocondrial , Mitocôndrias/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma
7.
Mol Biol Evol ; 29(5): 1393-406, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319144

RESUMO

Recent culture-independent studies of marine planktonic protists have unveiled a large diversity at all phylogenetic scales and the existence of novel groups. MAST-4 represents one of these novel uncultured lineages, and it is composed of small (~2 µm) bacterivorous eukaryotes that are widely distributed in marine systems. MAST-4 accounts for a significant fraction of the marine heterotrophic flagellates at the global level, playing key roles in the marine ecological network. In this study, we investigated the diversity of MAST-4, aiming to assess its limits and structure. Using ribosomal DNA (rDNA) sequences obtained in this study (both pyrosequencing reads and clones with large rDNA operon coverage), complemented with GenBank sequences, we show that MAST-4 is composed of only five main clades, which are well supported by small subunit and large subunit phylogenies. The differences in the conserved regions of the internal transcribed spacers 1 and 2 (ITS1 and ITS2) secondary structures strongly suggest that these five clades are different biological species. Based on intraclade divergence, ITS secondary structures and comparisons of ITS1 and ITS2 trees, we did not find evidence of more than one species within clade A, whereas as many as three species might be present within other clades. Overall, the genetic divergence of MAST-4 was surprisingly low for an organism with a global population size estimated to be around 10(24), indicating a very low evolutionary diversification within the group.


Assuntos
Alveolados/genética , Diatomáceas/genética , Evolução Molecular , Variação Genética , Fitoplâncton/genética , Alveolados/classificação , Sequência de Bases , DNA Intergênico/genética , DNA Ribossômico/genética , Diatomáceas/classificação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fitoplâncton/classificação
8.
Environ Microbiol ; 15(7): 2114-28, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23387819

RESUMO

Recent measurements of natural populations of the marine cyanobacterium Prochlorococcus indicate this numerically dominant phototroph assimilates phosphorus (P) at significant rates in P-limited oceanic regions. To better understand uptake capabilities of Prochlorococcus under different P stress conditions, uptake kinetic experiments were performed on Prochlorococcus MED4 grown in P-limited chemostats and batch cultures. Our results indicate that MED4 has a small cell-specific Vmax but a high specific affinity (αP ) for P, making it competitive with other marine cyanobacteria at low P concentrations. Additionally, MED4 regulates its uptake kinetics in response to P stress by significantly increasing Vmax and αP for both inorganic and organic P (PO4 and ATP). The Michaelis-Menten constant, KM , for PO4 remained constant under different P stress conditions, whereas the KM for ATP was higher when cells were stressed for PO4 , pointing to additional processes involved in uptake of ATP. MED4 cleaves the PO4 moieties from ATP, likely with a 5'-nucleotidase-like enzyme rather than alkaline phosphatase. MED4 exhibited distinct physiological differences between cells under steady-state P limitation versus those transitioning from P-replete to P-starved conditions. Thus, MED4 employs a variety of strategies to deal with changing P sources in the oceans and displays complexity in P stress acclimation and regulatory mechanisms.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fósforo/metabolismo , Prochlorococcus/fisiologia , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Oceanos e Mares , Prochlorococcus/metabolismo
9.
Environ Microbiol ; 15(7): 2129-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23647921

RESUMO

Phosphorus (P) availability drives niche differentiation in the most abundant phytoplankter in the oceans, the marine cyanobacterium Prochlorococcus. We compared the molecular response of Prochlorococcus strain MED4 to P starvation in batch culture to P-limited growth in chemostat culture. We also identified an outer membrane porin, PMM0709, which may allow transport of organic phosphorous compounds, rather than phosphate as previously suggested. The expression of three P uptake genes, pstS, the high-affinity phosphate-binding component of the phosphate transporter, phoA, an alkaline phosphatase, and porin PMM0709, were strongly upregulated (between 10- and 700-fold) under both P starvation and limitation. pstS exhibits high basal expression under P-replete conditions and is likely necessary for P uptake regardless of P availability. A P-stress regulatory gene, ptrA, was upregulated in response to both P starvation and limitation although a second regulatory gene, phoB, was not. Elevated expression levels (> 10-fold) of phoR, a P-sensing histidine kinase, were only observed under conditions of P limitation. We suggest Prochlorococcus in P-limited systems are physiologically distinct from cells subjected to abrupt P depletion. Detection of expression of both pstS and phoR in field populations will enable discernment of the present P status of Prochlorococcus in the oligotrophic oceans.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fósforo/metabolismo , Prochlorococcus/genética , Prochlorococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/análise , Análise por Conglomerados , Perfilação da Expressão Gênica , Genoma Bacteriano , Oceanos e Mares , Fosfatos/metabolismo , Porinas/genética , Porinas/metabolismo
10.
Microbiol Resour Announc ; 11(2): e0120121, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35142554

RESUMO

We present 16 seawater metatranscriptomes collected from a marine oxygen-deficient zone (ODZ) in the eastern tropical North Pacific (ETNP). This data set will be useful for identifying shifts in microbial community structure and function through oxic/anoxic transition zones, where overlapping aerobic and anaerobic microbial processes impact marine biogeochemical cycling.

11.
Environ Microbiol ; 12(7): 1828-41, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20192970

RESUMO

The structure of bacterial communities in first-year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon-specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January-March 2004) of first-year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from -9 degrees C to -26 degrees C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under-ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Eucariotos/classificação , Camada de Gelo , Archaea/isolamento & purificação , Regiões Árticas , Bactérias/isolamento & purificação , Análise por Conglomerados , Temperatura Baixa , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/isolamento & purificação , Genes de RNAr , Dados de Sequência Molecular , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Estações do Ano , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
12.
Nature ; 424(6952): 1042-7, 2003 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12917642

RESUMO

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.


Assuntos
Evolução Biológica , Cianobactérias/classificação , Cianobactérias/genética , Meio Ambiente , Genoma Bacteriano , Adaptação Fisiológica/efeitos da radiação , Cianobactérias/efeitos da radiação , Genes Bacterianos/genética , Luz , Dados de Sequência Molecular , Oceanos e Mares , Filogenia
13.
Nucleic Acids Res ; 35(Web Server issue): W58-62, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17631616

RESUMO

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a widespread technique for rapidly fingerprinting microbial communities. Users of T-RFLP frequently overlook the resolving power of well-chosen restriction endonucleases and often fail to report how they chose their enzymes. REPK (Restriction Endonuclease Picker) assists in the rational choice of restriction endonucleases for T-RFLP by finding sets of four restriction endonucleases that together uniquely differentiate user-designated sequence groups. With REPK, users can provide their own sequences (of any gene, not just 16S rRNA), specify the taxonomic rank of interest and choose from a number of filtering options to further narrow down the enzyme selection. Bug tracking is provided, and the source code is open and accessible under the GNU Public License v.2, at http://code.google.com/p/repk. The web server is available without access restrictions at http://rocaplab.ocean.washington.edu/tools/repk.


Assuntos
Bactérias/classificação , Biologia Computacional/métodos , Bases de Dados Factuais , Ecossistema , Internet , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Algoritmos , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/análise , DNA Ribossômico/genética , Enzimas/química , Microbiologia , Filogenia , Software , Interface Usuário-Computador
14.
ISME J ; 13(3): 618-631, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30315316

RESUMO

Much of the diversity of prokaryotic viruses has yet to be described. In particular, there are no viral isolates that infect abundant, globally significant marine archaea including the phylum Thaumarchaeota. This phylum oxidizes ammonia, fixes inorganic carbon, and thus contributes to globally significant nitrogen and carbon cycles in the oceans. Metagenomics provides an alternative to culture-dependent means for identifying and characterizing viral diversity. Some viruses carry auxiliary metabolic genes (AMGs) that are acquired via horizontal gene transfer from their host(s), allowing inference of what host a virus infects. Here we present the discovery of 15 new genomically and ecologically distinct Thaumarchaeota virus populations, identified as contigs that encode viral capsid and thaumarchaeal ammonia monooxygenase genes (amoC). These viruses exhibit depth and latitude partitioning and are distributed globally in various marine habitats including pelagic waters, estuarine habitats, and hydrothermal plume water and sediments. We found evidence of viral amoC expression and that viral amoC AMGs sometimes comprise up to half of total amoC DNA copies in cellular fraction metagenomes, highlighting the potential impact of these viruses on N cycling in the oceans. Phylogenetics suggest they are potentially tailed viruses and share a common ancestor with related marine Euryarchaeota viruses. This work significantly expands our view of viruses of globally important marine Thaumarchaeota.


Assuntos
Archaea/virologia , Metagenoma , Oxirredutases/genética , Vírus/genética , Amônia/metabolismo , Ciclo do Carbono , Transferência Genética Horizontal , Biologia Marinha , Metagenômica , Nitrificação , Ciclo do Nitrogênio , Oceanos e Mares , Filogenia , Proteínas Virais/genética , Vírus/enzimologia , Vírus/isolamento & purificação
15.
ISME J ; 13(11): 2714-2726, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31249393

RESUMO

Up to half of marine N losses occur in oxygen-deficient zones (ODZs). Organic matter flux from productive surface waters is considered a primary control on N2 production. Here we investigate the offshore Eastern Tropical North Pacific (ETNP) where a secondary chlorophyll a maximum resides within the ODZ. Rates of primary production and carbon export from the mixed layer and productivity in the primary chlorophyll a maximum were consistent with oligotrophic waters. However, sediment trap carbon and nitrogen fluxes increased between 105 and 150 m, indicating organic matter production within the ODZ. Metagenomic and metaproteomic characterization indicated that the secondary chlorophyll a maximum was attributable to the cyanobacterium Prochlorococcus, and numerous photosynthesis and carbon fixation proteins were detected. The presence of chemoautotrophic ammonia-oxidizing archaea and the nitrite oxidizer Nitrospina and detection of nitrate oxidoreductase was consistent with cyanobacterial oxygen production within the ODZ. Cyanobacteria and cyanophage were also present on large (>30 µm) particles and in sediment trap material. Particle cyanophage-to-host ratio exceeded 50, suggesting that viruses help convert cyanobacteria into sinking organic matter. Nitrate reduction and anammox proteins were detected, congruent with previously reported N2 production. We suggest that autochthonous organic matter production within the ODZ contributes to N2 production in the offshore ETNP.


Assuntos
Bacteriófagos/metabolismo , Cianobactérias/metabolismo , Cianobactérias/virologia , Ciclo do Nitrogênio , Água do Mar/química , Água do Mar/microbiologia , Carbono/metabolismo , Clorofila A/metabolismo , Cianobactérias/classificação , Metabolômica , Fixação de Nitrogênio , Oxigênio/metabolismo , Oceano Pacífico , Fotossíntese , Prochlorococcus/metabolismo , Prochlorococcus/virologia
16.
BMC Genomics ; 9: 211, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462506

RESUMO

BACKGROUND: Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18 classes of algae that comprise this taxonomic cluster. A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes, using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis and evolution. RESULTS: H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat, whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to orthologous genes in other plastids. These inserts are maintained in mRNA products. Two genes of interest in H. akashiwo, not previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of a lateral gene transfer event, and an unidentified 456 amino acid protein, which we hypothesize serves as a G-protein-coupled receptor. The H. akashiwo chloroplast genomes share little synteny with other algal chloroplast genomes sequenced to date. CONCLUSION: The fosmid cloning technique eliminates chloroplast isolation, does not require chloroplast DNA purification, and reduces sequencing processing time. Application of this method has provided new insights into chloroplast genome architecture, gene content and evolution within the stramenopile cluster.


Assuntos
Genoma de Cloroplastos , Phaeophyceae/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Oceano Atlântico , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Sequência Conservada , DNA de Algas/genética , DNA de Algas/isolamento & purificação , DNA de Cloroplastos/genética , DNA de Cloroplastos/isolamento & purificação , Furanos , Dados de Sequência Molecular , Oceano Pacífico , Phaeophyceae/classificação , Phaeophyceae/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Recombinases/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tiofenos
17.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016420

RESUMO

In marine oxygen deficient zones (ODZs), which contribute up to half of marine N loss, microbes use nitrogen (N) for assimilatory and dissimilatory processes. Here, we examine N utilization above and within the ODZ of the Eastern Tropical North Pacific Ocean, focusing on distribution, uptake and genes for the utilization of two simple organic N compounds, urea and cyanate. Ammonium, urea and cyanate concentrations generally peaked in the oxycline while uptake rates were highest in the surface. Within the ODZ, concentrations were lower, but urea N and C and cyanate C were taken up. All identified autotrophs had an N assimilation pathway that did not require external ammonium: ODZ Prochlorococcus possessed genes to assimilate nitrate, nitrite and urea; nitrite oxidizers (Nitrospina) possessed genes to assimilate nitrite, urea and cyanate; anammox bacteria (Scalindua) possessed genes to utilize cyanate; and ammonia-oxidizing Thaumarchaeota possessed genes to utilize urea. Urease genes were present in 20% of microbes, including SAR11, suggesting the urea utilization capacity was widespread. In the ODZ core, cyanate genes were largely (∼95%) associated with Scalindua, suggesting that, within this ODZ, cyanate N is primarily used for N loss via anammox (cyanammox), and that anammox does not require ammonium for N loss.


Assuntos
Cianatos/metabolismo , Oxigênio/análise , Água do Mar/química , Água do Mar/microbiologia , Ureia/metabolismo , Compostos de Amônio/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Oceano Pacífico
18.
PeerJ ; 5: e3865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28975058

RESUMO

BACKGROUND: Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). RESULTS: We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. CONCLUSIONS: Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In general, these transfers are from archaea that live in similar oxygen and temperature conditions as the bacteria that receive the genes. Potential hotspots of horizontal gene transfer between archaea and bacteria include hot springs, marine sediments, and oil wells. Cold spots for horizontal transfer included dilute, aerobic, mesophilic environments such as marine and freshwater surface waters.

19.
Front Microbiol ; 8: 2384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259587

RESUMO

Microbial communities in marine oxygen deficient zones (ODZs) are responsible for up to half of marine N loss through conversion of nutrients to N2O and N2. This N loss is accomplished by a consortium of diverse microbes, many of which remain uncultured. Here, we characterize genes for all steps in the anoxic N cycle in metagenomes from the water column and >30 µm particles from the Eastern Tropical North Pacific (ETNP) ODZ. We use an approach that allows for both phylogenetic identification and semi-quantitative assessment of gene abundances from individual organisms, and place these results in context of chemical measurements and rate data from the same location. Denitrification genes were enriched in >30 µm particles, even in the oxycline, while anammox bacteria were not abundant on particles. Many steps in denitrification were encoded by multiple phylotypes with different distributions. Notably three N2O reductases (nosZ), each with no cultured relative, inhabited distinct niches; one was free-living, one dominant on particles and one had a C terminal extension found in autotrophic S-oxidizing bacteria. At some depths >30% of the community possessed nitrite reductase nirK. A nirK OTU linked to SAR11 explained much of this abundance. The only bacterial gene found for NO reduction to N2O in the ODZ was a form of qnorB related to the previously postulated "nitric oxide dismutase," hypothesized to produce N2 directly while oxidizing methane. However, similar qnorB-like genes are also found in the published genomes of many bacteria that do not oxidize methane, and here the qnorB-like genes did not correlate with the presence of methane oxidation genes. Correlations with N2O concentrations indicate that these qnorB-like genes likely facilitate NO reduction to N2O in the ODZ. In the oxycline, qnorB-like genes were not detected in the water column, and estimated N2O production rates from ammonia oxidation were insufficient to support the observed oxycline N2O maximum. However, both qnorB-like and nosZ genes were present within particles in the oxycline, suggesting a particulate source of N2O and N2. Together, our analyses provide a holistic view of the diverse players in the low oxygen nitrogen cycle.

20.
ISME J ; 10(1): 197-209, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26151644

RESUMO

The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.


Assuntos
Arsênio/metabolismo , Prochlorococcus/genética , Prochlorococcus/metabolismo , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Arseniatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genômica , Metilação , Filogenia , Prochlorococcus/classificação , Prochlorococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA