Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039710

RESUMO

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.


Assuntos
Evolução Biológica , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Água/fisiologia , Xilema/anatomia & histologia
2.
Neuroimage ; 200: 552-555, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31291605

RESUMO

In our recent article [1] published in this journal we provide quantitative evidence to show that there are warnings and caveats in the way Gu and collaborators [2] define controllability of brain networks and measure the contribution of each of its nodes. The comment by Pasqualetti et al. [3] confirms the need to go beyond the methodology and approach presented in Gu et al.'s original work. In fact, they recognize that "the source of confusion is due to the fact that assessing controllability via numerical analysis typically leads to ill-conditioned problems, and thus often generates results that are difficult to interpret". This is indeed the first warning we discussed in [1]: our work was not meant to prove that brain networks are not controllable from one node, rather we wished to highlight that the one node controllability framework and all consequent results were not properly justified based on the methodology presented in Gu et al. [2]. We used in our work the same method of Gu et al. not because we believe it is the best methodology, but because we extensively investigated it with the aim of replicating, testing, and extending their results. The warning and caveats we have proposed are the results of this investigation. Indeed, on the basis of our controllability analyses of multiple human brain networks datasets, we concluded: "The λmin(WK) are statistically compatible with zero and thus the associated controllability Gramian cannot be inverted1. These results show that it is not possible to infer one node controllability of the brain numerically". Hence both groups agree that one node controllability cannot be inferred numerically.


Assuntos
Encéfalo , Rede Nervosa , Humanos , Rede Nervosa/fisiologia
3.
Neuroimage ; 176: 83-91, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654874

RESUMO

A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using anatomical diffusion imaging, in terms of their "controllability", drawing on concepts and methods of control theory. They reported that brain activity is controllable from a single node, and that the topology of brain networks provides an explanation for the types of control roles that different regions play in the brain. In this work, we first briefly review the framework of control theory applied to complex networks. We then show contrasting results on brain controllability through the analysis of five different datasets and numerical simulations. We find that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we show that random null models, with no biological resemblance to brain network architecture, produce the same type of relationship observed by Gu et al. between the average/modal controllability and weighted degree. Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In summary, our study highlights some warning and caveats in the brain controllability framework.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Modelos Neurológicos , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Reprodutibilidade dos Testes
4.
J Chem Phys ; 142(20): 204109, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26026436

RESUMO

Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

5.
Nat Commun ; 13(1): 3683, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760787

RESUMO

The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.


Assuntos
Conectoma , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem
6.
Sci Rep ; 8(1): 15682, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356174

RESUMO

Understanding the relationship between large-scale structural and functional brain networks remains a crucial issue in modern neuroscience. Recently, there has been growing interest in investigating the role of homeostatic plasticity mechanisms, across different spatiotemporal scales, in regulating network activity and brain functioning against a wide range of environmental conditions and brain states (e.g., during learning, development, ageing, neurological diseases). In the present study, we investigate how the inclusion of homeostatic plasticity in a stochastic whole-brain model, implemented as a normalization of the incoming node's excitatory input, affects the macroscopic activity during rest and the formation of functional networks. Importantly, we address the structure-function relationship both at the group and individual-based levels. In this work, we show that normalization of the node's excitatory input improves the correspondence between simulated neural patterns of the model and various brain functional data. Indeed, we find that the best match is achieved when the model control parameter is in its critical value and that normalization minimizes both the variability of the critical points and neuronal activity patterns among subjects. Therefore, our results suggest that the inclusion of homeostatic principles lead to more realistic brain activity consistent with the hallmarks of criticality. Our theoretical framework open new perspectives in personalized brain modeling with potential applications to investigate the deviation from criticality due to structural lesions (e.g. stroke) or brain disorders.


Assuntos
Encéfalo/fisiologia , Homeostase/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Mapeamento Encefálico , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Neurônios/fisiologia , Descanso/fisiologia , Acidente Vascular Cerebral/fisiopatologia
7.
Phys Rev E ; 94(4-1): 042404, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841634

RESUMO

In this work we study the likelihood of survival of single-species in the context of hostile and disordered environments. Population dynamics in this environment, as modeled by the Fisher equation, is characterized by negative average growth rate, except in some random spatially distributed patches that may support life. In particular, we are interested in the phase diagram of the survival probability and in the critical size problem, i.e., the minimum patch size required for surviving in the long-time dynamics. We propose a measure for the critical patch size as being proportional to the participation ratio of the eigenvector corresponding to the largest eigenvalue of the linearized Fisher dynamics. We obtain the (extinction-survival) phase diagram and the probability distribution function (PDF) of the critical patch sizes for two topologies, namely, the one-dimensional system and the fractal Peano basin. We show that both topologies share the same qualitative features, but the fractal topology requires higher spatial fluctuations to guarantee species survival. We perform a finite-size scaling and we obtain the associated scaling exponents. In addition, we show that the PDF of the critical patch sizes has an universal shape for the 1D case in terms of the model parameters (diffusion, growth rate, etc.). In contrast, the diffusion coefficient has a drastic effect on the PDF of the critical patch sizes of the fractal Peano basin, and it does not obey the same scaling law of the 1D case.


Assuntos
Meio Ambiente , Modelos Biológicos , Animais , Dinâmica Populacional , Probabilidade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA