Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839115

RESUMO

A Zr-doped CaO sorbent for high-temperature CO2 capture was fabricated using electrospinning. The nanofiber sorbent with an average filament diameter of about 160 nm is characterized by an initial CO2 uptake capacity of 12.1 mmol/g, a specific surface area of 79 m2/g, an indentation Young's modulus of 520 MPa, and a hardness of 1.6 MPa. After 50 carbonation/decarbonation cycles, the sorbent has a decent CO2 uptake capacity of 9.7 mmol/g due to the uniform distribution of CaZrO3 in the CaO nanofibers to prevent CaO grain growth caused by CaCO3 sintering. It is revealed that the sorbent CO2 uptake capacity decreases both with an increase in the decarbonation temperature and with an increase in the CO2 concentration in the gas flow upon carbonation, where the sorbent CO2 uptake capacity is more sensitive to the decarbonation temperature than to the CO2 concentration in the gaseous stream during carbonation. It is assumed that the electrospun regenerable Zr-doped CaO sorbent is effective for removing CO2 from flue gases.

2.
Nanomaterials (Basel) ; 12(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630899

RESUMO

The nanofibrous CaO sorbent for high-temperature CO2 capture was fabricated by the calcination of electrospun composite filaments containing calcium acetylacetonate and polyacrylonitrile as a calcium-oxide precursor and a binder polymer, respectively. The calcination was carried out in air to prevent PAN carbonization and to obtain pure CaO nanofibers. The resulting mats of CaO nanofibers with the average diameter of 130 nm were characterized by a specific surface area of 31 m2/g, a CO2-uptake capacity of 16.4 mmol/g at the carbonation temperature of 618 °C, a hardness of 1.87 MPa, and the indentation Young's modulus of 786 MPa. The low decarbonation temperature makes the fabricated sorbent promising, for example, for the calcium-looping technology of CO2 removal from the hot exhaust gases of fossil-fueled power plants.

3.
Materials (Basel) ; 15(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057348

RESUMO

This paper describes an experimental study of the relationships between thermal diffusivity and mechanical characteristics including Brinell hardness, microhardness, and Young's modulus of common pine (Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and small-leaf lime (Tilia cordata Mill.) wood. A dependence of Brinell hardness and thermal diffusivity tensor components upon humidity for common pine wood is found. The results of the measurement of Brinell hardness, microhardness, Young's modulus, and main components of thermal diffusivity tensor for three perpendicular cuts are found to be correlated. It is shown that the mechanical properties correlate better with the ratio of longitude to transversal thermal diffusivity coefficients than with the respective individual absolute values. The mechanical characteristics with the highest correlation with the abovementioned ratio are found to be the ratio of Young's moduli in longitude and transversal directions. Our technique allows a comparative express assessment of wood mechanical properties by means of a contactless non-destructive measurement of its thermal properties using dynamic thermal imaging instead of laborious and material-consuming destructive mechanical tests.

4.
Polymers (Basel) ; 13(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34833231

RESUMO

Zirconia nanofiber mats containing filaments with the average diameter of less than 100 nm were fabricated. It is found that the hardness and Young's modulus of the mats are sensitive to the microstructure, phase composition and average diameter of the zirconia nanofibers. The hardness and Young's modulus of the prepared zirconia nanofiber mats vary from 0.86 to 1.67 MPa and from 133 to 362 MPa, respectively, wherein an increase in hardness is accompanied by the rise in Young's modulus.

5.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443197

RESUMO

Wet high-energy milling and uniaxial pressing are used to fabricate CaO-stabilized tetragonal zirconia polycrystalline ceramic (Ca-TZP) with decent mechanical characteristics, i.e., a hardness of 11.5 GPa, Young's modulus of 230 GPa, and fracture toughness of 13 MPa·m0.5. The effect of CaO concentration and the sintering temperature on phase composition and mechanical characteristics of CaO-stabilized zirconia ceramic made of baddeleyite is investigated.

6.
Nanomaterials (Basel) ; 10(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105829

RESUMO

The mats of yttria-stabilized tetragonal zirconia nanofibers were prepared using electrospinning. The effect of calcination temperature in the range of 600-1200 °C on their microstructure, phase composition and mechanical properties was investigated. Phase composition of the nanofibers did not change in all ranges of the calcination temperatures, while the average grain size increased from 8 to 39 nm. Nanoindentation testing of the mats showed a decrease in the hysteresis loop energy in samples with higher calcination temperature. Hardness and the elastic modulus measured with the indentation technique were the highest for the mats calcined at 900 °C.

7.
Polymers (Basel) ; 11(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226789

RESUMO

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500-1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA