Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 154(4): 814-26, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953113

RESUMO

The Ski complex is a conserved multiprotein assembly required for the cytoplasmic functions of the exosome, including RNA turnover, surveillance, and interference. Ski2, Ski3, and Ski8 assemble in a tetramer with 1:1:2 stoichiometry. The crystal structure of an S. cerevisiae 370 kDa core complex shows that Ski3 forms an array of 33 TPR motifs organized in N-terminal and C-terminal arms. The C-terminal arm of Ski3 and the two Ski8 subunits position the helicase core of Ski2 centrally within the complex, enhancing RNA binding. The Ski3 N-terminal arm and the Ski2 insertion domain allosterically modulate the ATPase and helicase activities of the complex. Biochemical data suggest that the Ski complex can thread RNAs directly to the exosome, coupling the helicase and the exoribonuclease through a continuous RNA channel. Finally, we identify a Ski8-binding motif common to Ski3 and Spo11, rationalizing the moonlighting properties of Ski8 in mRNA decay and meiosis.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
2.
Mol Cell ; 48(2): 207-18, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22959269

RESUMO

Shortening eukaryotic poly(A) tails represses mRNA translation and induces mRNA turnover. The major cytoplasmic deadenylase, the Ccr4-Not complex, is a conserved multisubunit assembly. Ccr4-Not is organized around Not1, a large scaffold protein that recruits two 3'-5' exoribonucleases, Caf1 and Ccr4. We report structural studies showing that the N-terminal arm of yeast Not1 has a HEAT-repeat structure with domains related to the MIF4G fold. A MIF4G domain positioned centrally within the Not1 protein recognizes Caf1, which in turn binds the LRR domain of Ccr4 and tethers the Ccr4 nuclease domain. The interactions that form the nuclease core of the Ccr4-Not complex are evolutionarily conserved. Their specific disruption affects cell growth and mRNA deadenylation and decay in vivo in yeast. Thus, the N-terminal arm of Not1 forms an extended platform reminiscent of scaffolding proteins like eIF4G and CBP80, and places the two nucleases in a pivotal position within the Ccr4-Not complex.


Assuntos
Proteínas de Ciclo Celular , Ribonucleases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Fator de Iniciação Eucariótico 4G/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
3.
RNA ; 18(1): 124-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22114319

RESUMO

Ski2 is a cytoplasmic RNA helicase that functions together with the exosome in the turnover and quality control of mRNAs. Ski2 is conserved in eukaryotes and is related to the helicase Mtr4, a cofactor of the nuclear exosome involved in the processing and quality control of a variety of structured RNAs. We have determined the 2.4 Å resolution crystal structure of the 113 kDa helicase region of Saccharomyces cerevisiae Ski2. The structure shows that Ski2 has an overall architecture similar to that of Mtr4, with a core DExH region and an extended insertion domain. The insertion is not required for the formation of the Ski2-Ski3-Ski8 complex, but is instead an RNA-binding domain. While this is reminiscent of the Mtr4 insertion, there are specific structural and biochemical differences between the two helicases. The insertion of yeast Mtr4 consists of a ß-barrel domain that is flexibly attached to a helical stalk, contains a KOW signature motif, and binds in vitro-transcribed tRNA(i)(Met), but not single-stranded RNA. The ß-barrel domain of yeast Ski2 does not contain a KOW motif and is tightly packed against the helical stalk, forming a single structural unit maintained by a zinc-binding site. Biochemically, the Ski2 insertion has broad substrate specificity, binding both single-stranded and double-stranded RNAs. We speculate that the Ski2 and Mtr4 insertion domains have evolved with different properties tailored to the type of transcripts that are the substrates of the cytoplasmic and nuclear exosome.


Assuntos
RNA Helicases DEAD-box/química , Exossomos/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Citoplasma/enzimologia , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Nat Struct Mol Biol ; 11(6): 558-66, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15133499

RESUMO

In yeast cells, the THO complex has been implicated in mitotic recombination, transcription elongation and mRNA nuclear export. The stable core of THO consists of Tho2p, Hpr1p, Mft1p and Thp2p. Whether a complex with similar functions assembles in metazoa has not yet been established. Here we report that Drosophila melanogaster THO consists of THO2, HPR1 and three proteins, THOC5-THOC7, which have no orthologs in budding yeast. Gene expression profiling in cells depleted of THO components revealed that <20% of the transcriptome was regulated by THO. Nonetheless, export of heat-shock mRNAs under heat stress was strictly dependent on THO function. Notably, 8% of upregulated genes encode proteins involved in DNA repair. Thus, although THO function seems to be conserved, the vast majority of mRNAs are transcribed and exported independently of THO in D. melanogaster.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas Nucleares/fisiologia , RNA Mensageiro/genética , Fatores de Transcrição , Transporte Ativo do Núcleo Celular , Animais , Reparo do DNA , Perfilação da Expressão Gênica , Genoma , Ligação Proteica
5.
Mol Cell Biol ; 22(15): 5405-18, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12101235

RESUMO

Metazoan NXF1/p15 heterodimers promote export of bulk mRNA through nuclear pore complexes (NPC). NXF1 interacts with the NPC via two distinct structural domains, the UBA-like domain and the NTF2-like scaffold, which results from the heterodimerization of the NTF2-like domain of NXF1 with p15. Both domains feature a single nucleoporin-binding site, and they act synergistically to promote NPC translocation. Whether the NTF2-like scaffold (and thereby p15) contributes only to NXF1/NPC association or is also required for other functions, e.g., to impart directionality to the export process by regulating NXF1/NPC or NXF1/cargo interactions, remains unresolved. Here we show that a minimum of two nucleoporin-binding sites is required for NXF1-mediated export of cellular mRNA. These binding sites can be provided by an NTF2-like scaffold followed by a UBA-like domain (as in the wild-type protein) or by two NTF2-like scaffolds or two UBA-like domains in tandem. In the latter case, the export activity of NXF1 is independent of p15. Thus, as for the UBA-like domain, the function of the NTF2-like scaffold is confined to nucleoporin binding. More importantly, two copies of either of these domains are sufficient to promote directional transport of mRNA cargoes across the NPC.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Proteínas de Drosophila , Drosophila melanogaster , Humanos , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Oócitos/citologia , Oócitos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade , Xenopus laevis
6.
Nat Biotechnol ; 21(1): 89-92, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12483225

RESUMO

The ensemble of expressed proteins in a given cell is organized in multiprotein complexes. The identification of the individual components of these complexes is essential for their functional characterization. The introduction of the 'tandem affinity purification' (TAP) methodology substantially improved the purification and systematic genome-wide characterization of protein complexes in yeast. The use of this approach in higher eukaryotic cells has lagged behind its use in yeast because the tagged proteins are normally expressed in the presence of the untagged endogenous version, which may compete for incorporation into multiprotein complexes. Here we describe a strategy in which the TAP approach is combined with double-stranded RNA interference (RNAi) to avoid competition from corresponding endogenous proteins while isolating and characterizing protein complexes from higher eukaryotic cells. This strategy allows the determination of the functionality of the tagged protein and increases the specificity and the efficiency of the purification.


Assuntos
Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Proteínas/isolamento & purificação , Proteoma/química , Proteômica/métodos , Animais , Células Cultivadas , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Células Eucarióticas/química , Células Eucarióticas/fisiologia , Substâncias Macromoleculares , Complexos Multiproteicos , Proteínas/genética , Proteoma/genética , Interferência de RNA , RNA de Cadeia Dupla/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Nat Struct Mol Biol ; 21(7): 591-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880344

RESUMO

Pan2-Pan3 is a conserved complex involved in the shortening of mRNA poly(A) tails, the initial step in eukaryotic mRNA turnover. We show that recombinant Saccharomyces cerevisiae Pan2-Pan3 can deadenylate RNAs in vitro without needing the poly(A)-binding protein Pab1. The crystal structure of an active ~200-kDa core complex reveals that Pan2 and Pan3 interact with an unusual 1:2 stoichiometry imparted by the asymmetric nature of the Pan3 homodimer. An extended region of Pan2 wraps around Pan3 and provides a major anchoring point for complex assembly. A Pan2 module formed by the pseudoubiquitin-hydrolase and RNase domains latches onto the Pan3 pseudokinase with intertwined interactions that orient the deadenylase active site toward the A-binding site of the interacting Pan3. The molecular architecture of Pan2-Pan3 suggests how the nuclease and its pseudokinase regulator act in synergy to promote deadenylation.


Assuntos
Exorribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Cristalografia por Raios X , Exorribonucleases/metabolismo , Exorribonucleases/fisiologia , Modelos Biológicos , Proteínas de Ligação a Poli(A)/fisiologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
8.
Science ; 326(5957): 1268-71, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19965477

RESUMO

To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mycoplasma pneumoniae/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , Transcrição Gênica , Sequência de Bases , Genes Bacterianos , Dados de Sequência Molecular , Mycoplasma pneumoniae/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óperon , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/análise
9.
Science ; 326(5957): 1235-40, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19965468

RESUMO

The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.


Assuntos
Proteínas de Bactérias/análise , Genoma Bacteriano , Complexos Multiproteicos/análise , Mycoplasma pneumoniae/química , Mycoplasma pneumoniae/genética , Proteoma , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biologia Computacional , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Mycoplasma pneumoniae/metabolismo , Mycoplasma pneumoniae/ultraestrutura , Reconhecimento Automatizado de Padrão , Mapeamento de Interação de Proteínas , Biologia de Sistemas
10.
Science ; 326(5957): 1263-8, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19965476

RESUMO

To understand basic principles of bacterial metabolism organization and regulation, but also the impact of genome size, we systematically studied one of the smallest bacteria, Mycoplasma pneumoniae. A manually curated metabolic network of 189 reactions catalyzed by 129 enzymes allowed the design of a defined, minimal medium with 19 essential nutrients. More than 1300 growth curves were recorded in the presence of various nutrient concentrations. Measurements of biomass indicators, metabolites, and 13C-glucose experiments provided information on directionality, fluxes, and energetics; integration with transcription profiling enabled the global analysis of metabolic regulation. Compared with more complex bacteria, the M. pneumoniae metabolic network has a more linear topology and contains a higher fraction of multifunctional enzymes; general features such as metabolite concentrations, cellular energetics, adaptability, and global gene expression responses are similar, however.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Redes e Vias Metabólicas , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/metabolismo , Trifosfato de Adenosina/metabolismo , Meios de Cultura , Metabolismo Energético , Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Glicólise , Mycoplasma pneumoniae/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Transdução de Sinais , Biologia de Sistemas , Transcrição Gênica , Óperon de RNAr
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA