Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255946

RESUMO

Metastatic progression is a complex, multistep process and the leading cause of cancer mortality. There is growing evidence that emphasises the significance of epigenetic modification, specifically DNA methylation and histone modifications, in influencing colorectal (CRC) metastasis. Epigenetic modifications influence the expression of genes involved in various cellular processes, including the pathways associated with metastasis. These modifications could contribute to metastatic progression by enhancing oncogenes and silencing tumour suppressor genes. Moreover, specific epigenetic alterations enable cancer cells to acquire invasive and metastatic characteristics by altering cell adhesion, migration, and invasion-related pathways. Exploring the involvement of DNA methylation and histone modification is crucial for identifying biomarkers that impact cancer prediction for metastasis in CRC. This review provides a summary of the potential epigenetic biomarkers associated with metastasis in CRC, particularly DNA methylation and histone modifications, and examines the pathways associated with these biomarkers.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Humanos , Biomarcadores , Adesão Celular , Epigênese Genética , Neoplasias Colorretais/genética
2.
Trends Immunol ; 40(4): 328-344, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853334

RESUMO

Methylation of DNA at CpG sites is the most common and stable of epigenetic changes in cancer. Hypermethylation acts to limit immune checkpoint blockade immunotherapy by inhibiting endogenous interferon responses needed for recognition of cancer cells. By contrast, global hypomethylation results in the expression of programmed death ligand 1 (PD-L1) and inhibitory cytokines, accompanied by epithelial-mesenchymal changes that can contribute to immunosuppression. The drivers of these contrasting methylation states are not well understood. DNA methylation also plays a key role in cytotoxic T cell 'exhaustion' associated with tumor progression. We present an updated exploratory analysis of how DNA methylation may define patient subgroups and can be targeted to develop tailored treatment combinations to help improve patient outcomes.


Assuntos
Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Imunoterapia , Melanoma/imunologia , Melanoma/terapia , Antígeno B7-H1/imunologia , Citocinas/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Melanoma/patologia
3.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948126

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Rim Policístico Autossômico Dominante , Animais , Modelos Animais de Doenças , Humanos , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo
4.
Semin Cancer Biol ; 51: 149-159, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28807546

RESUMO

Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/genética , Animais , Carcinogênese/patologia , Humanos , Metástase Neoplásica , Neoplasias/patologia
5.
Am J Nephrol ; 48(6): 415-424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30463078

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid-filled cysts in the kidney and end stage renal disease by the fourth or fifth decade of life. Mutations in the PKD1 gene account for 85% of all cases of ADPKD. No curative therapy exists for patients affected by this disease and an underexplored avenue for the treatment of ADPKD is the targeting of epigenetic changes that occur during cystogenesis. Limited data exists on alterations in DNA methylation that are associated with ADPKD. Given the similarities between cyst growth and neoplasia, and the fact that 2 DNA methylation inhibitors are already Food and Drug Administration-approved for the treatment of myelodysplastic syndrome, we hypothesized that global DNA methylation patterns in ADPKD would parallel that observed in neoplasia, and which may provide an opportunity to treat ADPKD with epigenetic inhibitors. To address this hypothesis, we undertook a global DNA methylation analysis of human ADPKD kidney. METHODS: We generated single nucleotide resolution methylomes of cortical kidney tissue from individuals with ADPKD, and from non-ADPKD kidney tissue, using reduced representation bisulfite sequencing. Using quantitative reverse transcription polymerase chain reaction, we investigated expression of the PKD1 gene in both ADPKD and non-ADPKD kidney. RESULTS: We have shown that ADPKD-derived genomic DNA exhibits global hypomethylation when compared with non-ADPKD kidney, a pattern commonly observed in DNA methylation studies of tumor-derived tissue. We have also identified 13 discrete regions that are significantly differentially methylated in ADPKD compared to non-ADPKD, and 8 of these are gene specific. The PKD1 gene shows an increase in methylation at the 3' end of the gene body, but in contrast to previously published data, this is not associated with a decrease in PKD1 mRNA expression. CONCLUSION: This genome-scale single nucleotide resolution analysis of DNA methylation in human polycystic kidneys suggests that DNA methylation differences at specific loci are associated with ADPKD. Further exploration into the significance of these preliminary results may shed light on the disease process, and potentially reveal new therapeutic possibilities.


Assuntos
Metilação de DNA , Loci Gênicos/genética , Córtex Renal/patologia , Rim Policístico Autossômico Dominante/genética , Epigênese Genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Rim Policístico Autossômico Dominante/patologia , RNA Mensageiro/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
6.
Bioinformatics ; 30(13): 1814-22, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24608764

RESUMO

MOTIVATION: The rapid development of high-throughput sequencing technologies has enabled epigeneticists to quantify DNA methylation on a massive scale. Progressive increase in sequencing capacity present challenges in terms of processing analysis and the interpretation of the large amount of data; investigating differential methylation between genome-scale data from multiple samples highlights this challenge. RESULTS: We have developed a differential methylation analysis package (DMAP) to generate coverage-filtered reference methylomes and to identify differentially methylated regions across multiple samples from reduced representation bisulphite sequencing and whole genome bisulphite sequencing experiments. We introduce a novel fragment-based approach for investigating DNA methylation patterns for reduced representation bisulphite sequencing data. Further, DMAP provides the identity of gene and CpG features and distances to the differentially methylated regions in a format that is easily analyzed with limited bioinformatics knowledge. AVAILABILITY AND IMPLEMENTATION: The software has been implemented in C and has been written to ensure portability between different platforms. The source code and documentation is freely available (DMAP: as compressed TAR archive folder) from http://biochem.otago.ac.nz/research/databases-software/. Two test datasets are also available for download from the Web site. Test dataset 1 contains reads from chromosome 1 of a patient and a control, which is used for comparative analysis in the current article. Test dataset 2 contains reads from a part of chromosome 21 of three disease and three control samples for testing the operation of DMAP, especially for the analysis of variance. Example commands for the analyses are included.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Ilhas de CpG , Genômica , Humanos , Software
7.
Nucleic Acids Res ; 40(10): e79, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344695

RESUMO

Recent advances in next generation sequencing (NGS) technology now provide the opportunity to rapidly interrogate the methylation status of the genome. However, there are challenges in handling and interpretation of the methylation sequence data because of its large volume and the consequences of bisulphite modification. We sequenced reduced representation human genomes on the Illumina platform and efficiently mapped and visualized the data with different pipelines and software packages. We examined three pipelines for aligning bisulphite converted sequencing reads and compared their performance. We also comment on pre-processing and quality control of Illumina data. This comparison highlights differences in methods for NGS data processing and provides guidance to advance sequence-based methylation data analysis for molecular biologists.


Assuntos
Metilação de DNA , Alinhamento de Sequência/métodos , Análise de Sequência de DNA , Software , Sulfitos , Genoma Humano , Genômica/métodos , Humanos
8.
Genes Chromosomes Cancer ; 52(2): 174-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23074036

RESUMO

Epigenetic abnormalities at the IGF2/H19 locus play a key role in the onset of Wilms tumor. These tumors can be classified into three molecular subtypes depending on the events occurring at this locus: loss of imprinting (LOI), loss of heterozygosity (LOH), or retention of imprinting (ROI). As IGF2 LOI is a consequence of aberrant methylation, we hypothesized that this subtype of Wilms tumors might display global abnormalities of methylation. We therefore analyzed the methylation status of satellite DNA, as a surrogate for global methylation in 50 Wilms tumor patients. Satellite methylation was quantified by a methylation-sensitive quantitative PCR. We confirmed hypomethylation of both satellite α (Sat α) and satellite 2 (Sat 2) DNA in Wilms tumor samples compared with normal kidney. In addition, we found that LOI tumors, unlike ROI or LOH ones, showed concordant hypomethylation of both Sat α and Sat 2 DNA. This would suggest that the LOI subtype of Wilms tumor, which unlike other subtypes results from an epimutation, has a global deregulation of methylation mechanisms.


Assuntos
Metilação de DNA , DNA Satélite/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Tumor de Wilms/genética , Southern Blotting , Instabilidade Genômica , Humanos , Reação em Cadeia da Polimerase , Tumor de Wilms/classificação
9.
Int Rev Cell Mol Biol ; 383: 41-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359970

RESUMO

Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.


Assuntos
Tumores Neuroendócrinos , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Antagonistas de Androgênios , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Epigênese Genética
10.
Trends Mol Med ; 30(5): 499-515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582623

RESUMO

The clinical use of cell-free DNA (cfDNA) methylation in managing lung cancer depends on its ability to differentiate between malignant and healthy cells, assign methylation changes to specific tissue sources, and elucidate opportunities for targeted therapy. From a technical standpoint, cfDNA methylation analysis is primed as a potential clinical tool for lung cancer screening, early diagnosis, prognostication, and treatment, pending the outcome of elaborate validation studies. Here, we discuss the current state of the art in cfDNA methylation analysis, examine the unique features and limitations of these new methods in a clinical context, propose two models for applying cfDNA methylation data for lung cancer screening, and discuss future research directions.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Metilação de DNA , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Ácidos Nucleicos Livres/genética , Biomarcadores Tumorais/genética , Prognóstico , Detecção Precoce de Câncer/métodos , Gerenciamento Clínico
11.
Cancers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473261

RESUMO

Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.

12.
PET Clin ; 18(2): 169-187, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36858744

RESUMO

Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.


Assuntos
Epigênese Genética , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Medicina de Precisão
13.
Methods Mol Biol ; 2588: 249-278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418693

RESUMO

Ribonucleic acids (RNAs) are fundamental molecules that control regulation and expression of the genome and therefore the function of a cell. Robust analysis and quantification of RNA transcripts hold critical importance in understanding cell function, altered phenotypes in different biological context, for understanding and targeting diseases. The development of RNA-sequencing (RNA-Seq) now provides opportunities to analyze the expression and function of RNA molecules at an unprecedented scale. However, the strategy for RNA-Seq experimental design and data analysis can substantially differ depending on the biological application. The design choice could also have significant impact for downstream results and interpretation of data. Here we describe key critical considerations required for RNA-Seq experimental design and also describe a step-by-step bioinformatics workflow detailing the different steps required for RNA-Seq data analysis. We believe this article will be a valuable guide for designing and analyzing RNA-Seq data to address a wide range of different biological questions.


Assuntos
Análise de Dados , Projetos de Pesquisa , RNA-Seq , Sequenciamento do Exoma , RNA/genética
14.
STAR Protoc ; 4(4): 102714, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37950864

RESUMO

Aberrant DNA methylation is a universal feature of cancer. Here, we present a protocol for generating high-quality genome-scale DNA methylation sequencing data from a variety of human cancer biospecimens including immortalized cell lines, fresh-frozen surgical resections, and formalin-fixed paraffin-embedded tissues. We describe steps for DNA extraction considerations, reduced representation bisulfite sequencing, data processing and quality control, and downstream data analysis and integration. This protocol is also applicable for other human diseases and methylome profiling in other organisms. For complete details on the use and execution of this protocol, please refer to Rodger et al. (2023).1.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Metilação de DNA/genética , Análise de Sequência de DNA/métodos , Neoplasias/genética
15.
Methods Mol Biol ; 2588: 231-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36418692

RESUMO

Circulating tumor cells (CTCs) are precursors of the metastatic cascade, which is responsible for 90% of all cancer-related deaths. CTCs arise from solid tumors and travel through the bloodstream and lymphatic system. Developments in the isolation and analysis of CTCs promise potential biomarker assays for detection and monitoring of cancer through a minimally invasive procedure. Despite this, the precise role of CTCs in metastasis remains poorly characterized, mainly due to the low density of CTCs (1-10 CTCs per 10 mL of blood) present in patient blood and the lack of robust methods for their isolation in a standard laboratory setting. CellSearch is currently the only FDA-approved CTC enrichment protocol, but limitations of this EpCAM-based method include cost, availability, and the use of a single surface marker for capture. To address these limitations, we have optimized an existing method, MetaCell, which exploits the differences in size of CTCs compared to other blood cells for CTC enrichment from blood. MetaCell contains a membrane with 8 µm pores, and blood is filtered through this kit by capillary action and CTCs, which are typically larger than the pores and remain on top of the membrane, while most leukocytes pass through the pores. The membrane along with these CTCs can be detached and transferred to 6-well plates for culturing or directly used for characterization. Here, we provide a detailed protocol for enrichment of CTCs using the filtration device MetaCell and a procedure for characterization of CTCs by immunohistochemical staining.


Assuntos
Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Contagem de Células , Leucócitos , Filtração
16.
iScience ; 26(6): 106986, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378317

RESUMO

Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.

17.
J Biomed Biotechnol ; 2012: 741542, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23193365

RESUMO

Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background.


Assuntos
Biblioteca Gênica , Análise de Sequência de DNA/métodos , Sulfitos/química , Pareamento de Bases/genética , Bases de Dados Genéticas , Genoma Humano/genética , Humanos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA/normas
18.
Methods Mol Biol ; 2458: 3-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103959

RESUMO

Reduced representation bisulfite sequencing (RRBS) is a technique used for assessing genome-wide DNA methylation patterns in eukaryotes. RRBS was introduced to focus on CpG-rich regions that are likely to be of most interest for epigenetic regulation, such as gene promoters and enhancer sequence elements (Meissner et al., Nature 454:766-770, 2008). This "reduced representation" lowers the cost of sequencing and also gives increased depth of coverage, facilitating the resolution of more subtle changes in methylation levels. Here, we describe a modified RRBS sequencing (RRBS-seq) library preparation. Our protocol is optimized for generating single base-resolution libraries when low input DNA is a concern (10-100 ng). Our protocol includes steps to optimize library preparation, such as using deparaffinization solution (when formalin-fixed material is used), and a replacement of gel size-selection with sample purification beads. The described protocol can be accomplished in 3 days and has been successfully applied to tissues or cells from different organisms, including formalin-fixed tissues, to yield robust and reproducible results.


Assuntos
Metilação de DNA , Epigênese Genética , Ilhas de CpG , DNA/genética , Análise de Sequência de DNA/métodos , Sulfitos
19.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551655

RESUMO

Morphological, transcriptomic, and genomic defects are well-explored parameters of cancer biology. In more recent years, the impact of epigenetic influences, such as DNA methylation, is becoming more appreciated. Aberrant DNA methylation has been implicated in many types of cancers, influencing cell type, state, transcriptional regulation, and genomic stability to name a few. Traditionally, large populations of cells from the tissue of interest are coalesced for analysis, producing averaged methylome data. Considering the inherent heterogeneity of cancer, analysing populations of cells as a whole denies the ability to discover novel aberrant methylation patterns, identify subpopulations, and trace cell lineages. Due to recent advancements in technology, it is now possible to obtain methylome data from single cells. This has both research and clinical implications, ranging from the identification of biomarkers to improved diagnostic tools. As with all emerging technologies, distinct experimental, bioinformatic, and practical challenges present themselves. This review begins with exploring the potential impact of single-cell sequencing on understanding cancer biology and how it could eventually benefit a clinical setting. Following this, the techniques and experimental approaches which made this technology possible are explored. Finally, the present challenges currently associated with single-cell DNA methylation sequencing are described.

20.
Cancers (Basel) ; 14(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884509

RESUMO

Circulating tumour cells (CTC) from solid tumours are a prerequisite for metastasis. Isolating CTCs and understanding their biology is essential for developing new clinical tests and precision oncology. Currently, CellSearch is the only FDA (U.S. Food and Drug Administration)-approved method for CTC enrichment but possesses several drawbacks owing to a reliance on the epithelial cell adhesion molecule (EpCAM) and a resource-intensive nature. Addressing these shortcomings, we optimised an existing size-based method, MetaCell, to enrich CTCs from blood of colorectal cancer (CRC) patients. We evaluated the ability of MetaCell to enrich CTCs by spiking blood with CRC cell lines and assessing the cell recovery rates and WBC depletion via immunostaining and gene expression. We then applied MetaCell to samples from 17 CRC patients and seven controls. Recovery rates were >85% in cell lines, with >95% depletion in WBCs. MetaCell yielded CTCs and CTC clusters in 52.9% and 23.5% of the patients, respectively, without false positives in control patients. CTCs and cluster detection did not correlate with histopathological parameters. Overall, we demonstrated that the MetaCell platform enriched CRC cells with high recovery rates and high purity. Our pilot study also demonstrated the ability of MetaCell to detect CTCs in CRC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA