Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200169

RESUMO

BACKGROUND: Fullerenes and metallofullerenes can be considered promising nanopharmaceuticals themselves and as a basis for chemical modification. As reactive oxygen species homeostasis plays a vital role in cells, the study of their effect on genes involved in oxidative stress and anti-inflammatory responses are of particular importance. METHODS: Human fetal lung fibroblasts were incubated with aqueous dispersions of C60, C70, and Gd@C82 in concentrations of 5 nM and 1.5 µM for 1, 3, 24, and 72 h. Cell viability, intracellular ROS, NOX4, NFκB, PRAR-γ, NRF2, heme oxygenase 1, and NAD(P)H quinone dehydrogenase 1 expression have been studied. RESULTS & CONCLUSION: The aqueous dispersions of C60, C70, and Gd@C82 fullerenes are active participants in reactive oxygen species (ROS) homeostasis. Low and high concentrations of aqueous fullerene dispersions (AFD) have similar effects. C70 was the most inert substance, C60 was the most active substance. All AFDs have both "prooxidant" and "antioxidant" effects but with a different balance. Gd@C82 was a substance with more pronounced antioxidant and anti-inflammatory properties, while C70 had more pronounced "prooxidant" properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Fibroblastos/metabolismo , Fulerenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Cultivadas , Feto/efeitos dos fármacos , Feto/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanopartículas , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Água/química
2.
ACS Biomater Sci Eng ; 9(3): 1391-1401, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36821424

RESUMO

Fullerenes and metallofullerenes play an active role in homeostasis of reactive oxygen species and may cause oxidative damage to cells. As pristine fullerenes are a basis for derivatization, studying oxidative DNA damage/repair and apoptosis is important in terms of genotoxicity and cytotoxicity for their biomedical application. Aqueous dispersions of C60, C70, and Gd@C82 (5 nM and 1.5 µM) were cultured with human fetal lung fibroblasts for 1, 3, 24, and 72 h. Oxidative DNA damage/repair was assessed through concentration of 8-oxodG, double-strand breaks, and activation of BRCA1. Activity of apoptosis was assessed through the BCL2/BAX ratio. All three fullerenes caused oxidative modification of DNA at the early stages; C60 caused the most long-term damage, Gd@C82 caused the most short-term damage, and C70 caused "wave-like" dynamics. The dynamics of DNA repair correlated with the dynamics of oxidative damage, but Gd@C82 caused more prolonged activation of the repair system than C60 or C70. The oxidative toxicity of Gd@C82, is minor and the oxidative toxicity of C60 is mild and short-term, in contrast to C70. In relation to the studied effects, the fullerenes can be arranged in a safety row of Gd@C82 > C60 > C70.


Assuntos
Fulerenos , Humanos , Fulerenos/farmacologia , Estresse Oxidativo , Pulmão , Reparo do DNA , Apoptose , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA