Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 204(5): 777-92, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24567358

RESUMO

The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization.


Assuntos
Cavéolas/fisiologia , Caveolina 1/genética , Proteínas ras/metabolismo , Animais , Cavéolas/metabolismo , Regulação para Baixo , Lipídeos de Membrana/metabolismo , Camundongos , Transdução de Sinais
2.
Mol Cancer Ther ; 12(12): 2847-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077915

RESUMO

Metformin is an oral biguanide commonly used for the treatment of type II diabetes and has recently been demonstrated to possess antiproliferative properties that can be exploited for the prevention and treatment of a variety of cancers. The mechanisms underlying this effect have not been fully elucidated. Using both in vitro and in vivo models, we examined the effects of metformin on endometrial tumors with defined aberrations in the PI3K/PTEN/mTOR and MAPK signaling pathways to understand metformin mechanism of action and identify clinically useful predictors of response to this agent. In vitro assays of proliferation, cytotoxicity, and apoptosis were used to quantify the effects of metformin on endometrial cancer cell lines with mutations in the PI3K/PTEN/mTOR and MAPK signaling pathways. The in vivo effects of oral metformin on tumor progression were further examined using xenograft mouse models of endometrial cancer. K-Ras localization was analyzed by confocal microscopy using GFP-labeled oncogenic K-Ras and by immunoblot following subcellular fractionation. Metformin inhibited cell proliferation, induced apoptosis, and decreased tumor growth in preclinical endometrial cancer models, with the greatest response observed in cells harboring activating mutations in K-Ras. Furthermore, metformin displaces constitutively active K-Ras from the cell membrane, causing uncoupling of the MAPK signaling pathway. These studies provide a rationale for clinical trials using metformin in combination with PI3K-targeted agents for tumors harboring activating K-Ras mutations, and reveal a novel mechanism of action for metformin.


Assuntos
Neoplasias do Endométrio/metabolismo , Metformina/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Inativação Gênica , Humanos , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética
3.
Mol Biol Cell ; 19(12): 5422-34, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18829865

RESUMO

Munc18a is an SM protein required for SNARE-mediated fusion. The molecular details of how Munc18a acts to enhance neurosecretion have remained elusive. Here, we use in vitro fusion assays to characterize how specific interactions between Munc18a and the neuronal SNAREs enhance the rate and extent of fusion. We show that Munc18a interacts directly and functionally with the preassembled t-SNARE complex. Analysis of Munc18a point mutations indicates that Munc18a interacts with helix C of the Syntaxin1a NRD in the t-SNARE complex. Replacement of the t-SNARE SNAP25b with yeast Sec9c had little effect, suggesting that Munc18a has minimal contact with SNAP25b within the t-SNARE complex. A chimeric Syntaxin built of the Syntaxin1a NRD and the H3 domain of yeast Sso1p and paired with Sec9c eliminated stimulation of fusion, suggesting that Munc18a/Syntaxin1a H3 domain contacts are important. Additionally, a Syntaxin1A mutant lacking a flexible linker region that allows NRD movement abolished stimulation of fusion. These experiments suggest that Munc18a binds to the Syntaxin1a NRD and H3 domain within the assembled t-SNARE complex, positioning them for productive VAMP2 binding. In this capacity, Munc18a serves as a platform for trans-SNARE complex assembly that facilitates efficient SNARE-mediated membrane fusion.


Assuntos
Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Animais , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Proteínas Munc18/genética , Ligação Proteica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
4.
Eukaryot Cell ; 4(12): 2017-28, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16339720

RESUMO

Exocytosis in Saccharomyces cerevisiae requires the specific interaction between the plasma membrane t-SNARE complex (Sso1/2p;Sec9p)and a vesicular v-SNARE (Snc1/2p). While SNARE proteins drive membrane fusion, many aspects of SNARE assembly and regulation are ill defined. Plasma membrane syntaxin homologs (including Sso1p) contain a highly charged juxtamembrane region between the transmembrane helix and the "SNARE domain" or core complex domain. We examined this region in vitro and in vivo by targeted sequence modification, including insertions and replacements. These modified Sso1 proteins were expressed as the sole copy of Sso in S. cerevisiae and examined for viability. We found that mutant Sso1 proteins with insertions or duplications show limited function, whereas replacement of as few as three amino acids preceding the transmembrane domain resulted in a nonfunctional SNARE in vivo. Viability is also maintained when two proline residues are inserted in the juxtamembrane of Sso1p, suggesting that helical continuity between the transmembrane domain and the core coiled-coil domain is not absolutely required. Analysis of these mutations in vitro utilizing a reconstituted fusion assay illustrates that the mutant Sso1 proteins are only moderately impaired in fusion. These results suggest that the sequence of the juxtamembrane region of Sso1p is vital for function in vivo, independent of the ability of these proteins to direct membrane fusion.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos Básicos/química , Meios de Cultura/química , Análise Mutacional de DNA , Marcação de Genes , Genes Fúngicos , Engenharia Genética , Fusão de Membrana , Dados de Sequência Molecular , Mutagênese Insercional , Mutação Puntual , Prolina/metabolismo , Estrutura Terciária de Proteína , Proteínas Qa-SNARE/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA