Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 30(2): 328-40, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21157429

RESUMO

Kinetochores assemble on distinct 'centrochromatin' containing the histone H3 variant CENP-A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4-K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine-specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α-satellite DNA and to no longer efficiently recruit HJURP, the CENP-A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP-A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α-satellite transcription, maintenance of CENP-A levels and kinetochore stability.


Assuntos
Autoantígenos/metabolismo , Centrômero/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Artificiais Humanos/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Histonas/metabolismo , Centrômero/metabolismo , Proteína Centromérica A , Cromatina/genética , Imunoprecipitação da Cromatina , Primers do DNA/genética , Engenharia Genética/métodos , Humanos , Cinetocoros/metabolismo , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Curr Protoc Cell Biol ; Chapter 8: Unit8.8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23129118

RESUMO

Assessment of protein dynamics in living cells is crucial for understanding their biological properties and functions. The SNAP-tag, a self labeling suicide enzyme, presents a tool with unique features that can be adopted for determining protein dynamics in living cells. Here we present detailed protocols for the use of SNAP in fluorescent pulse-chase and quench-chase-pulse experiments. These time-slicing methods provide powerful tools to assay and quantify the fate and turnover rate of proteins of different ages. We cover advantages and pitfalls of SNAP-tagging in fixed- and live-cell studies and evaluate the recently developed fast-acting SNAPf variant. In addition, to facilitate the analysis of protein turnover datasets, we present an automated algorithm for spot recognition and quantification.


Assuntos
Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Microscopia de Fluorescência/métodos , Proteínas/análise , Proteínas/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Centrômero/metabolismo , Centrômero/ultraestrutura , Humanos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA