RESUMO
Joubert syndrome (JS) is a clinically and genetically heterogeneous genetic disorder. To date, 40 JS-causing genes have been reported and CPLANE1 is one of the most frequently mutated, with biallelic pathogenic missense and truncating variants explaining up to 14% of JS cases. We present a case of JS diagnosed after the identification of a novel biallelic intragenic duplication of exons 20-46 of CPLANE1. The quadruplication was identified by short-read sequencing and copy number variant analysis and confirmed in tandem by long PCR with the breakpoints defined by a nanopore-based long-read sequencing approach. Based on the genetic findings and the clinical presentation of the patient, a brain MRI was ordered, evidencing the molar tooth sign, which confirmed the diagnosis of JS in the patient. This is, to the best of our knowledge, the first report of an intragenic duplication in this gene as the potential molecular mechanism of JS.
Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Humanos , Retina/patologia , Cerebelo , Anormalidades Múltiplas/genética , Doenças Renais Císticas/diagnóstico , Anormalidades do Olho/genéticaRESUMO
Inversions are structural variants that are generally balanced. However, they could lead to gene disruptions or have positional effects leading to diseases. Mutations in the NHS gene cause Nance-Horan syndrome, an X-linked disorder characterised by congenital cataracts and dental anomalies. Here, we aimed to characterise a balanced pericentric inversion X(p22q27), maternally inherited, in a child with syndromic bilateral cataracts by breakpoint mapping using whole-genome sequencing (WGS). 30× Illumina paired-end WGS was performed in the proband, and breakpoints were confirmed by Sanger sequencing. EdU assays and FISH analysis were used to assess skewed X-inactivation patterns. RNA expression of involved genes in the breakpoint boundaries was evaluated by droplet-digital PCR. We defined the breakpoint position of the inversion at Xp22.13, with a 15 bp deletion, disrupting the unusually large intron 1 of the canonical NHS isoform, and also perturbing topologically-associated domains (TADs). Moreover, a microhomology region of 5 bp was found on both sides. RNA analysis confirmed null and reduced NHS expression in the proband and his unaffected mother, respectively. In conclusion, we report the first chromosomal inversion disrupting NHS, fine-mapped by WGS. Our data expand the clinical spectrum and the pathogenic mechanisms underlying the NHS defects.
Assuntos
Catarata/congênito , Catarata/patologia , Pontos de Quebra do Cromossomo , Inversão Cromossômica , Cromossomos Humanos X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Proteínas de Membrana/genética , Anormalidades Dentárias/patologia , Catarata/etiologia , Catarata/metabolismo , Criança , Mapeamento Cromossômico , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Masculino , Linhagem , Anormalidades Dentárias/etiologia , Anormalidades Dentárias/metabolismoRESUMO
Most consensus recommendations for the genetic diagnosis of neurodevelopmental disorders (NDDs) do not include the use of next generation sequencing (NGS) and are still based on chromosomal microarrays, such as comparative genomic hybridization array (aCGH). This study compares the diagnostic yield obtained by aCGH and clinical exome sequencing in NDD globally and its spectrum of disorders. To that end, 1412 patients clinically diagnosed with NDDs and studied with aCGH were classified into phenotype categories: global developmental delay/intellectual disability (GDD/ID); autism spectrum disorder (ASD); and other NDDs. These categories were further subclassified based on the most frequent accompanying signs and symptoms into isolated forms, forms with epilepsy; forms with micro/macrocephaly and syndromic forms. Two hundred and forty-five patients of the 1412 were subjected to clinical exome sequencing. Diagnostic yield of aCGH and clinical exome sequencing, expressed as the number of solved cases, was compared for each phenotype category and subcategory. Clinical exome sequencing was superior than aCGH for all cases except for isolated ASD, with no additional cases solved by NGS. Globally, clinical exome sequencing solved 20% of cases (versus 5.7% by aCGH) and the diagnostic yield was highest for all forms of GDD/ID and lowest for Other NDDs (7.1% versus 1.4% by aCGH) and ASD (6.1% versus 3% by aCGH). In the majority of cases, diagnostic yield was higher in the phenotype subcategories than in the mother category. These results suggest that NGS could be used as a first-tier test in the diagnostic algorithm of all NDDs followed by aCGH when necessary.
RESUMO
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of patients harboring AUTS2 sequence variants have not been extensively described. In this study, we describe the phenotype of five new patients with AUTS2 pathogenic variants, three of them harboring loss-of-function sequence variants. The phenotype of the patients was characterized by attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) or autistic features and mild global developmental delay (GDD) or intellectual disability (ID), all in 4/5 patients (80%), a frequency higher than previously reported for ADHD and autistic features. Microcephaly and short stature were found in 60% of the patients; and feeding difficulties, generalized hypotonia, and ptosis, were each found in 40%. We also provide the aggregated frequency of the 32 items included in the AUTS2 syndrome severity score (ASSS) in patients currently reported in the literature. The main characteristics of the syndrome are GDD/ID in 98% of patients, microcephaly in 65%, feeding difficulties in 62%, ADHD or hyperactivity in 54%, and autistic traits in 52%. Finally, using the location of 31 variants from the literature together with variants from the five patients, we found significantly higher ASSS values in patients with pathogenic variants affecting the 3' end of the gene, confirming the genotype-phenotype correlation initially described.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtorno do Espectro Autista/etiologia , Proteínas do Citoesqueleto/genética , Fatores de Transcrição/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/genética , Mutação com Perda de Função , Masculino , SíndromeRESUMO
PURPOSE: Leber congenital amaurosis (LCA) is one of the most severe inherited retinal dystrophies with the earliest age of onset. Mutations in the Crumbs homologue 1 (CRB1; OMIM 600105) gene explain 10%-24% of cases with LCA depending on the population. The aim of the present work was to study a fetal mutation associated to LCA in maternal plasma by a new methodology in the noninvasive prenatal diagnosis field: the denaturing High Performance Liquid Chromatography (dHPLC). METHODS: This study presents the case of a compound heterozygous fetus for two mutations in CRB1 (1q3.1-q32.2). dHPLC and automated DNA sequencing were used to detect the paternally inherited fetal mutation in a maternal plasma sample collected at the 12th week of gestation. To test the detection limit of dHPLC, we made serial dilutions of paternal DNA in control DNA. RESULTS: We were able to detect the presence of the paternally inherited fetal CRB1 mutation in maternal plasma by dHPLC. Moreover, by comparing chromatograms of serial dilutions to the plasma sample, we could ascertain that the percentage of fetal DNA in maternal plasma was at least 2%. However, the detection of the fetal mutation was not possible by automated DNA sequencing. CONCLUSIONS: dHPLC seems to be sensitive enough to detect small amounts of fetal DNA in maternal plasma samples. It could be a useful tool for the noninvasive prenatal detection of paternally inherited point mutations associated with retinopathies.
Assuntos
Cegueira/congênito , Cegueira/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Atrofias Ópticas Hereditárias/diagnóstico , Atrofias Ópticas Hereditárias/genética , Diagnóstico Pré-Natal , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Feminino , Feto/metabolismo , Genealogia e Heráldica , Humanos , Masculino , Desnaturação de Ácido Nucleico , Linhagem , GravidezRESUMO
We report a 22-year-old female with a variant of the Axenfeld-Rieger Syndrome (ARS) and discuss its relation with the subtelomeric 6p deletion. An ARS variant has been described in two familial cases of Axenfeld-Rieger Anomaly (ARA) featuring specific extra ocular manifestations-hypertelorism, midface hypoplasia, mild sensorial deafness, hydrocephaly, psychomotor delay and flattened femoral epiphyses. We proposed that this set of characteristics represents a separate syndrome within the ARS. On the other hand, there have been reported four cases with cryptic de novo pure 6pter microdeletions detected by specific subtelomeric probes in patients with ARS characteristics. We describe a 6pter deletion detected by SNP genotyping and confirmed by FISH and MLPA involving the FOXC1 gene in a patient with ocular and systemic findings that fit perfectly with the variant mentioned above. We conclude that the ARS variant belongs to the ARS phenotypic spectrum, which includes flattened femoral epiphyses as a feature.
Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 6 , Anormalidades do Olho/genética , Variação Genética , Anormalidades Múltiplas/diagnóstico por imagem , Adulto , Mapeamento Cromossômico , Sondas de DNA , Feminino , Fatores de Transcrição Forkhead/genética , Genótipo , Quadril/diagnóstico por imagem , Humanos , Hipertelorismo/genética , Hibridização in Situ Fluorescente , Deficiência Intelectual/genética , Cariotipagem , Polimorfismo de Nucleotídeo Único , Radiografia , SíndromeRESUMO
Tremendous progress in genetics and genomics led to a wide range of healthcare providers, genetic tests, and more patients who can benefit from these developments. To guarantee and improve the quality of genetic testing, a unified European-based registration for individuals qualified in biomedicine was realized. Therefore a Europe-wide recognition of the profession 'European registered Clinical Laboratory Geneticist (ErCLG)' based on a syllabus of core competences was established which allows for harmonization in professional education. The 'European Board of Medical Genetics division - Clinical Laboratory Geneticist' provides now since 3 years the possibility to register as an ErCLG. Applicants may be from all European countries and since this year also from outside of Europe. Five subtitles reflect the exact specialty of each ErCLG, who can reregister every 5 years. A previously not possible statistics based on ~300 individuals from 19 countries as holders of an ErCLG title provides interesting insights into the professionals working in human genetics. It could be substantiated that there are around twice as many females than males and that a PhD title was achieved by 80% of registered ErCLGs. Also most ErCLGs are still trained as generalists (66%), followed by such ErCLGs with focus on molecular genetics (23%); the remaining are concentrated either on clinical (6%), tumor (4%) or biochemical genetics (1%). In conclusion, besides MDs and genetic counselors/nurses an EU-wide recognition system for Clinical Laboratory Geneticist has been established, which strengthens the status of specialists working in human genetic diagnostics in Europe and worldwide.
Assuntos
Serviços de Laboratório Clínico/normas , Credenciamento/normas , Genética Médica/normas , Pessoal de Laboratório Médico/normas , Credenciamento/legislação & jurisprudência , Credenciamento/organização & administração , União Europeia , Humanos , Recursos HumanosRESUMO
PURPOSE: The X-linked form of retinitis pigmentosa (XLRP) is the most severe type because of its early onset and rapid progression. Five XLRP loci have been mapped, although only two genes, RPGR (for RP3) and RP2, have been cloned. In this study, 30 unrelated XLRP Spanish families were screened to determine the molecular cause of the disease. METHODS: Haplotype analysis was performed, to determine whether the disease is linked to the RP3 or RP2 region. In those families in which the disease cosegregates with either locus, mutational screening was performed. The RP2 gene, the first 15 exons of RPGR at the cDNA level, and the open reading frame (ORF) 14 and 15 exons were screened at the genomic DNA level. RESULTS: Haplotype analysis ruled out the implication in the disease of RP2 in six families and of RPGR in four families. Among the 30 unrelated XLRP families, there 4 mutations were identified in RP2 (13%), 3 of which are novel, and 16 mutations in RPGR (53.3%), 7 of which are novel. CONCLUSIONS: In this cohort of XLRP families, as has happened in previous studies, RP3 also seems to be the most prevalent form of XLRP, and, based on the results, the authors propose a four-step protocol for molecular diagnosis of XLRP families.
Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Retinose Pigmentar/genética , Análise Mutacional de DNA , Feminino , Proteínas de Ligação ao GTP , Haplótipos , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , EspanhaRESUMO
The discovery of circulating fetal DNA in maternal blood has been an encouraging step forward in the prenatal diagnostic field. It has opened up the possibility of development of a noninvasive method for the genetic analysis of the fetus. Many techniques have been applied to the study of this fetal DNA, but automated sequencing has been seldom used. The intention of this study was to use the automated sequencing technique for the detection of a paternally inherited fetal mutation in maternal plasma. Maternal plasma samples from a pregnant woman, whose husband had a mutation (Q134X) in the RP2 gene, which is located in the X-chromosome, were collected at two different gestational ages (10th and 19th week of gestation) in order to determine whether the paternally inherited fetal mutation could be detected by automated sequencing. Restriction analysis was also performed to confirm the results. The fetal mutation was clearly detected in the maternal plasma by the use of automated sequencing. The automated sequencing enables the possibility of analyzing fetal sequences, at a nucleotide level, in order to detect mutations or polymorphisms which are distinguishable from maternal sequences.
Assuntos
DNA/sangue , Proteínas do Olho/genética , Pai , Feto/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação Puntual , Diagnóstico Pré-Natal/métodos , Sequência de Bases , Cromossomos Humanos X/genética , Análise Mutacional de DNA , Feminino , Proteínas de Ligação ao GTP , Idade Gestacional , Humanos , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase , Gravidez , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genéticaRESUMO
PURPOSE: To date, non-invasive prenatal diagnosis (NIPD) of monogenic disorders has been limited to cases with a paternal origin. This work shows a validation study of the Droplet Digital PCR (ddPCR) technology for analysis of both paternally and maternally inherited fetal alleles. For the purpose, single nucleotide polymorphisms (SNPs) were studied with the only intention to mimic monogenic disorders. METHODS: NIPD SNP genotyping was performed by ddPCR in 55 maternal plasma samples. In 19 out of 55 cases, inheritance of the paternal allele was determined by presence/absence criteria. In the remaining 36, determination of the maternally inherited fetal allele was performed by relative mutation dosage (RMD) analysis. RESULTS: ddPCR exhibited 100% accuracy for detection of paternal alleles. For diagnosis of fetal alleles with maternal origin by RMD analysis, the technology showed an accuracy of 96%. Twenty-nine out of 36 were correctly diagnosed. There was one FP and six maternal plasma samples that could not be diagnosed. DISCUSSION: In this study, ddPCR has shown to be capable to detect both paternal and maternal fetal alleles in maternal plasma. This represents a step forward towards the introduction of NIPD for all pregnancies independently of the parental origin of the disease.
Assuntos
Feto/metabolismo , Doenças Genéticas Inatas/genética , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Diagnóstico Pré-Natal/métodos , Alelos , DNA/sangue , DNA/genética , Feminino , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/diagnóstico , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
PURPOSE: Norrie disease (OMIM 310600) is a rare X-linked disorder characterized by congenital blindness in males. Approximately 40 to 50% of the cases develop deafness and mental retardation. X-linked familial exudative vitreoretinopathy (XL-FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. Both X-linked disorders are due to mutations in the NDP gene, which encodes a 133 amino acid protein called Norrin, but autosomal recessive (AR) and autosomal dominant (AD) forms of FEVR have also been described. In this study, we report the molecular findings and the related phenotype in five Spanish families affected with Norrie disease or XL-FEVR due to mutations of the NDP gene. METHODS: The study was conducted in 45 subjects from five Spanish families. These families were clinically diagnosed with Norrie disease or similar conditions. The three exons of the NDP gene were analyzed by automatic DNA sequencing. Haplotype analyses were also performed. RESULTS: Two new nonsense mutations, apart from other mutations previously described in the NDP gene, were found in those patients affected with ND or X-linked FEVR. CONCLUSIONS: An important genotype-phenotype variation was found in relation to the different mutations of the NDP gene. In fact, the same mutation may be responsible for different phenotypes. We speculate that there might be other molecular factors that interact in the retina with Norrin, which contribute to the resultant phenotypes.
Assuntos
Cegueira/congênito , Oftalmopatias/genética , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Displasia Retiniana/genética , Corpo Vítreo , Adolescente , Pré-Escolar , Códon sem Sentido , Análise Mutacional de DNA , Surdez/genética , Exsudatos e Transudatos , Feminino , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , EspanhaRESUMO
KEY CLINICAL MEASSAGE: Patients with rare deletions in 16q12 and a duplication of 17p, both interstitial and de novo. Only seven cases have been described with these deletions and none of them presented other chromosomal abnormalities. The proband showed a complex phenotype with features found in patients with dup17p11.2 syndrome, deletions in 16q12.
RESUMO
Since the discovery of the presence of fetal DNA in maternal blood, non-invasive fetal sex determination has been the test most widely translated into clinical practice. To date there is no agreement between the different laboratories performing such tests in relation to which is the best protocol. As a consequence there are almost as many protocols as laboratories offering the service, using different methodologies and thus obtaining different diagnostic accuracies. By the end of 2007, after a validation study performed in 316 maternal samples collected between the 5th and 12th week of gestation, the fetal sex determination was incorporated into clinical practice in our Service. The test is performed in the first trimester of pregnancy, and it is offered as part of the genetic counseling process for couples at risk of X-linked disorders. As a general rule and in order to avoid misdiagnosis, two samples at different gestational ages are tested per patient. The analysis is performed by the study of the SRY gene by RT-PCR. Two hundred and twenty six pregnancies have been tested so far in these 5 years. Neither false positives nor false negatives diagnoses have been registered, thus giving a diagnostic accuracy of 100%.
RESUMO
INTRODUCTION: Since the presence of circulating cell-free fetal DNA (ccffDNA) in maternal peripheral blood was demonstrated in 1997, great efforts have been done in order to use this source of fetal material for noninvasive prenatal diagnosis. The advantage that it represents is avoiding the obstetric invasive procedures required for conventional prenatal diagnosis. AREAS COVERED: Efforts are mainly focused on finding the most accurate way to diagnose the most common fetal aneuploidies, paying special attention to trisomy 21. Recent advances in technology offer new diagnostic tools with high degrees of sensitivity thus generating great expectations for this type of diagnosis. However, there are other reasons why pregnant women undergo conventional prenatal diagnosis. Being at risk of transmitting a monogenic disorder is one of them. And although the percentage of those pregnancies may represent a small percentage of the diagnosis performed in the first trimester, these numbers should not be underestimated. EXPERT OPINION: Management of pregnancies at risk of an X-linked Mendelian disorder has changed thanks to the noninvasive fetal sex assessment. As for other Mendelian disorders, until recently, their study was limited to those cases paternally inherited. Nevertheless, the new emerging technologies are also opening the scope to maternally inherited disorders.
Assuntos
Doenças Genéticas Inatas/diagnóstico , Diagnóstico Pré-Natal , Tomada de Decisões , Feminino , Humanos , GravidezRESUMO
Prenatal diagnosis (PD) is available for pregnancies at risk of monogenic disorders. However, PD requires the use of invasive obstetric techniques for fetal-sample collection and therefore, involves a risk of fetal loss. Circulating fetal DNA in the maternal bloodstream is being used to perform non-invasive prenatal diagnosis (NIPD). NIPD is a challenging discipline because of the biological features of the maternal blood sample. Maternal blood is an unequal mixture of small (and fragmented) amounts of fetal DNA within a wide background of maternal DNA. For this reason, initial NIPD studies have been based on the analysis of specific paternally inherited fetal tracts not present in the maternal genome so as to ensure their fetal origin. Following this strategy, different NIPD studies have been carried out, such as fetal-sex assessment for pregnancies at risk of X-linked disorders, RhD determination, and analysis of single-gene disorders with a paternal origin. The study of the paternal mutation can be used for fetal diagnosis of dominant disorders or to more accurately assess the risk of an affected child in case of recessive diseases. Huntington's disease, cystic fibrosis, or achondroplasia are some examples of diseases studied using NIPD. New technologies are opening NIPD to the analysis of maternally inherited fetal tracts. NIPD of trisomy 21 is the latest study derived from the use of next-generation sequencing (NGS).
Assuntos
DNA/sangue , Doenças Fetais/diagnóstico , Doenças Fetais/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Diagnóstico Pré-Natal , Feminino , Doenças Fetais/sangue , Doenças Genéticas Inatas/sangue , Marcadores Genéticos , Testes Genéticos , Humanos , Troca Materno-Fetal , Gravidez , Sistema do Grupo Sanguíneo Rh-HrRESUMO
OBJECTIVE: The present study aims to validate multiplex ligation-dependent probe amplification (MLPA) technique with subtelomeric probe mixes as a screening method to detect aneuploidy and unbalanced terminal chromosomal rearrangements in spontaneous abortions (SAs). METHODS: MLPA with P036B and P070 probe mixes was performed on 221 miscarriage DNA samples between the 5th and 24th week of gestation. Cytogenetic culture was attempted on 178 miscarriages. Karyotyped miscarriages served as controls in this blinded study. Results were confirmed by quantitative fluorescent-PCR (QF-PCR). RESULTS: Among the karyotyped miscarriages, MLPA was able to detect all the expected aneuploidies, as well as an unbalanced product from a reciprocal translocation, and revealed cryptic deletions and duplications not visible at the 550-band resolution level. In addition, chromosomal anomalies were found in approximately 37% of cases that failed to grow or could not be cultivated. As expected, ploidy changes were not detected. Copy number variation was found for target sequences of P036B (CYFIP1, MRPL41, CAB45) and P070 (DECR2, TNFRSF18) probe mixes. CONCLUSIONS: We propose the use of MLPA with subtelomeric probe mixes as a reliable, rapid and economical first approach to detect aneuploidy and unbalanced terminal chromosomal rearrangements in SAs.
Assuntos
Aborto Espontâneo/genética , Aneuploidia , Rearranjo Gênico/genética , Testes Genéticos/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Aborto Espontâneo/patologia , Adulto , Células Cultivadas , DNA/análise , DNA/genética , Feminino , Marcadores Genéticos , Humanos , Cariotipagem , Reação em Cadeia da Polimerase , Gravidez , Método Simples-CegoRESUMO
BACKGROUND: Aneuploidies involve approximately 80% of chromosomal anomalies found in spontaneous miscarriages. Since cytogenetic studies show high rates of failure, we have incorporated the quantitative fluorescent polymerase chain reaction (QF-PCR) technique to the study of numerical chromosome anomalies in miscarriages. METHODS: Multiplex and simple QF-PCR assays have been performed on 160 miscarriage and 34 parental DNA samples analysing specific short tandem repeat (STR) markers for chromosomes 2, 7, 13, 15, 16, 18, 21, 22 and X. Cases successfully karyotyped were used as controls in our study. RESULTS: While maternal contamination could be detected in such cases, a molecular result was obtained for 94% of miscarriages without a cytogenetic one. Thirty-six per cent of them were diagnosed with numerical chromosome anomalies. Parental origin of the extra chromosome and the error stage of meiosis could be also determined. CONCLUSIONS: QF-PCR represents a useful and reliable tool to diagnose aneuploidies in spontaneous miscarriages. It provides information about parental and meiotic origin of anomaly, allowing an appropriate genetic counselling.
Assuntos
Aborto Espontâneo/genética , Aneuploidia , Reação em Cadeia da Polimerase/métodos , Sequências de Repetição em Tandem , Aberrações Cromossômicas , Feminino , Fluorescência , Marcadores Genéticos , Humanos , Cariotipagem , Masculino , Gravidez , TrissomiaRESUMO
Desde que en 1997 se demostrara la presencia de ADN fetal en sangre periférica materna, son numerosos los grupos que se dedican a investigar en este campo para intentar desarrollar e incorporar a la rutina clínica el diagnóstico prenatal no invasivo. De la mano de la constatación de la presencia del ADN fetal en el torrente materno surgió el diagnóstico no invasivo del sexo fetal. Este y el estudio del RhD fetal han sido los únicos análisis incorporados a la rutina clínica. Aunque existen grupos investigando en el campo del diagnóstico de las enfermedades mendelianas, los esfuerzos se han centrado en el diagnóstico de las aneuploidías fetales. En un principio, el alcance de los diagnósticos estuvo limitado por la presencia mayoritaria de ADN materno coexistiendo con el ADN fetal. Sin embargo, el desarrollo reciente de tecnologías mucho más sensibles, está permitiendo un avance vertiginoso de este campo(AU)
Since the presence of foetal DNA in maternal peripheral blood was demonstrated in 1997, several research groups have developed their activity in this field in order to promote non-invasive prenatal diagnosis into clinical routine. By demonstrating the presence of foetal DNA in the maternal bloodstream, the non-invasive assessment of the sex of the foetus was achieved. This test, together with the foetal RhD determination, has been the only ones incorporated into clinical routine. Although there are research groups working on the diagnosis of Mendelian diseases, efforts have focused on the diagnosis of foetal aneuploidies. At first, the diagnostic scope was limited by the higher presence of maternal DNA co-existing with the foetal DNA. However, recent advances in more sensitive technologies is enabling dramatic progress to be made in this field(AU)
Assuntos
Humanos , Masculino , Feminino , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal , DNA/análise , DNA , Aneuploidia , Diagnóstico Pré-Natal/tendências , Tecnologia Biomédica/métodos , Gestão de Ciência, Tecnologia e Inovação em SaúdeRESUMO
Presentamos un caso de trisomía 9 en mosaico, diagnosticada de forma prenatal en una mujer de 39 años a la que se practicó una amniocentesis por edad materna avanzada. En el análisis citogenético se observó un rango entre un 15 y un 30% de la línea celular con trisomía 9 en los diferentes tejidos analizados; esta infrecuente alteración cromosómica suele presentar diversas anomalías morfológicas que se traducen en signos ecográficos que, aun no siendo específicos de la afección, pueden ser útiles para llegar a una sospecha prenatal de la trisomía 9. Describimos nuestros hallazgos citogenéticos y ecográficos, así como las alteraciones encontradas en la autopsia fetal
We present a case of trisomy 9 in mosaic, diagnosed during prenatal period in a 39 year-old woman, who had amniocentesis for maternal advanced age. By cytogenetic analysis, we found between 15-30% aneuploidy in different fetal tissues. This chromosomal rare alteration usually presents diverse morphological anomalies that are translated in ultrasound signs that, although not specific of this pathology, can be useful to arrive to a prenatal suspicion of trisomy 9. We describe our cytogenetic and ultrasound diagnosis, as well as the alterations found in fetal autopsy