Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Biochem ; 131: 109670, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38768871

RESUMO

Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.


Assuntos
Síndrome Metabólica , Compostos Fitoquímicos , Extratos Vegetais , Punica granatum , Punica granatum/química , Síndrome Metabólica/tratamento farmacológico , Humanos , Compostos Fitoquímicos/farmacologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Frutas/química , Anti-Inflamatórios/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39136737

RESUMO

Type 2 diabetes mellitus (T2DM) is a widespread chronic disease characterized by persistent hyperglycemia, leading to severe complications such as diabetic cardiomyopathy and nephropathy, significantly affecting patient health and quality of life. The complex mechanisms underlying these complications include chronic inflammation, oxidative stress, and metabolic dysregulation. Diabetic cardiomyopathy, marked by structural and functional heart abnormalities, and diabetic nephropathy, characterized by progressive kidney damage, are major contributors to the increased morbidity and mortality associated with T2DM. AdipoRon, a synthetic adiponectin receptor agonist, has shown potential in preclinical studies for mimicking the beneficial effects of endogenous adiponectin, reducing inflammation and oxidative stress, and improving lipid metabolism and mitochondrial function. This systematic review evaluates the therapeutic potential of AdipoRon, focusing on its impact on diabetic cardiomyopathy and nephropathy. Through a comprehensive literature search and analysis, we highlight AdipoRon's role in ameliorating cardiovascular and renal complications in various animal models and cellular systems. The findings underscore the urgent need for translational clinical studies to validate AdipoRon's efficacy and safety in human populations, aiming to advance this promising therapeutic approach from experimental models to clinical application, potentially offering new hope for improved management of diabetic complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA