RESUMO
The elastic interaction between kinks (and antikinks) within domain walls plays a pivotal role in shaping the domain structure, and their dynamics. In bulk materials, kinks interact as elastic monopoles, dependent on the distance between walls (d-1) and typically characterized by a rigid and straight domain configuration. In this work the evolution of the domain structure is investigated, as the sample size decreases, by the means of in situ heating microscopy techniques on free-standing samples. As the sample size decreases, a significant transformation is observed: domain walls exhibit pronounced curvature, accompanied by an increase in both domain wall and junction density. This transformation is attributed to the pronounced influence of kinks, inducing sample warping, where "dipole-dipole" interactions are dominant (d-2). Moreover, a critical thickness range that delineates a crossover between the monopolar and dipolar regimens is experimentally identified and corroborated by atomic simulations. These findings are relevant for in situ TEM studies and for the development of novel devices based on free-standing ferroic thin films and nanomaterials.
RESUMO
Therapeutic factors secreted by mesenchymal stem cells (MSCs) promote angiogenesis in vivo. However, delivery of MSCs in the absence of a cytoprotective environment offers limited efficacy due to low cell retention, poor graft survival, and the nonmaintenance of a physiologically relevant dose of growth factors at the injury site. The delivery of stem cells on an extracellular matrix (ECM)-based platform alters cell behavior, including migration, proliferation, and paracrine activity, which are essential for angiogenesis. We demonstrate the biophysical and biochemical effects of preconditioning human MSCs (hMSCs) for 96 h on a three-dimensional (3D) ECM-based microgel platform. By altering the macromolecular concentration surrounding cells in the microgels, the proangiogenic phenotype of hMSCs can be tuned in a controlled manner through cell-driven changes in extracellular stiffness and "outside-in" integrin signaling. The softest microgels were tested at a low cell dose (5 × 104 cells) in a preclinical hindlimb ischemia model showing accelerated formation of new blood vessels with a reduced inflammatory response impeding progression of tissue damage. Molecular analysis revealed that several key mediators of angiogenesis were up-regulated in the low-cell-dose microgel group, providing a mechanistic insight of pathways modulated in vivo. Our research adds to current knowledge in cell-encapsulation strategies by highlighting the importance of preconditioning or priming the capacity of biomaterials through cell-material interactions. Obtaining therapeutic efficacy at a low cell dose in the microgel platform is a promising clinical route that would aid faster tissue repair and reperfusion in "no-option" patients suffering from peripheral arterial diseases, such as critical limb ischemia (CLI).
Assuntos
Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Microgéis/química , Neovascularização Fisiológica , Animais , Proliferação de Células , Células Imobilizadas/química , Células Imobilizadas/citologia , Células Imobilizadas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/cirurgia , Humanos , Integrinas/genética , Integrinas/metabolismo , Isquemia/fisiopatologia , Isquemia/cirurgia , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos NusRESUMO
Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.
Assuntos
Microtecnologia , Peptídeos , Peptídeos/químicaRESUMO
There are limited studies on predisposing factors for COVID-19 positivity in asymptomatic pregnant women. The literature published to date on asymptomatic COVID-19 pregnant carriers does not focus on pregnancy or pre-pregnancy comorbidities. We wanted to identify risk factors for COVID-19 in asymptomatic pregnant women. We performed a retrospective chart review of 263 asymptomatic pregnant women admitted to labour and delivery at New York City Health + Hospitals/Lincoln.We analysed the association between race, body mass index (BMI), smoking, indication for admission, gravidity, parity, pre-pregnancy comorbidity, pregnancy comorbidity via uni- and multivariate statistical tests. Only Hispanic race was significant in the univariate analysis (p = .049). At the post-hoc analysis, Hispanics had a higher proportion of COVID-19 cases compared to non-Hispanic Blacks (p = .019). No variables were significantly associated with COVID-19 positivity in the multivariate analysis.Hispanic race appears to be a risk factor for asymptomatic COVID-19 infection during pregnancy. We speculate that the cultural and socioeconomic reality of Hispanic women living in our community leads to more exposure opportunities and therefore, a higher infection rate.Impact statementWhat is already known on this subject? Little is known on the role of comorbidities and risk factors that can favour COVID-19 infection during pregnancy.What do the results of this study add? We found that Hispanic pregnant asymptomatic women had a higher rate of COVID-19 in comparison to non-Hispanic Black women. Pre-pregnancy comorbidities such as pregestational diabetes, hypertension and asthma were not associated with COVID-19 positivity.What are the implications of these findings for clinical practice and/or further research? The reasons why the Hispanic race is more affected by COVID-19 during pregnancy is unclear. The social environment of Hispanic women living in our community, such as their tendency to live in multigenerational and multi-family households, might contribute to a higher infection rate. More resources might be dedicated in the future to Hispanic-dense neighbourhoods.
Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , COVID-19/epidemiologia , Feminino , Hospitais Urbanos , Humanos , Cidade de Nova Iorque/epidemiologia , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2RESUMO
Multifunctional nanocomposites that exhibit well-defined physical properties and encode spatiotemporally controlled responses are emerging as components for advanced responsive systems, for example, in soft robotics or drug delivery. Here an example of such a system, based on simple magnetic hydrogels composed of iron oxide magnetic nanoflowers and Pluronic F127 that generates heat upon alternating magnetic field irradiation is described. Rules for heat-induction in bulk hydrogels and the heat-dependence on particle concentration, gel volume, and gel exposed surface area are established, and the dependence on external environmental conditions in "closed" as compared to "open" (cell culture) system, with controllable heat jumps, of ∆T 0-12°C, achieved within ≤10 min and maintained described. Furthermore the use of extrusion-based 3D printing for manipulating the spatial distribution of heat in well-defined printed features with spatial resolution <150 µm, sufficiently fine to be of relevance to tissue engineering, is presented. Finally, localized heat induction in printed magnetic hydrogels is demonstrated through spatiotemporally-controlled release of molecules (in this case the dye methylene blue). The study establishes hitherto unobserved control over combined spatial and temporal induction of heat, the applications of which in developing responsive scaffold remodeling and cargo release for applications in regenerative medicine are discussed.
Assuntos
Hidrogéis , Nanocompostos , Temperatura Alta , Impressão Tridimensional , Engenharia TecidualRESUMO
Although circular RNAs (circRNAs) are enriched in the mammalian brain, very little is known about their potential involvement in brain function and psychiatric disease. Here, we show that circHomer1a, a neuronal-enriched circRNA abundantly expressed in the frontal cortex, derived from Homer protein homolog 1 (HOMER1), is significantly reduced in both the prefrontal cortex (PFC) and induced pluripotent stem cell-derived neuronal cultures from patients with schizophrenia (SCZ) and bipolar disorder (BD). Moreover, alterations in circHomer1a were positively associated with the age of onset of SCZ in both the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). No correlations between the age of onset of SCZ and linear HOMER1 mRNA were observed, whose expression was mostly unaltered in BD and SCZ postmortem brain. Using in vivo circRNA-specific knockdown of circHomer1a in mouse PFC, we show that it modulates the expression of numerous alternative mRNA transcripts from genes involved in synaptic plasticity and psychiatric disease. Intriguingly, in vivo circHomer1a knockdown in mouse OFC resulted in specific deficits in OFC-mediated cognitive flexibility. Lastly, we demonstrate that the neuronal RNA-binding protein HuD binds to circHomer1a and can influence its synaptic expression in the frontal cortex. Collectively, our data uncover a novel psychiatric disease-associated circRNA that regulates synaptic gene expression and cognitive flexibility.
Assuntos
Transtorno Bipolar/genética , Cognição , Regulação da Expressão Gênica , RNA Circular/genética , Esquizofrenia/genética , Sinapses/metabolismo , Adulto , Animais , Feminino , Proteínas de Arcabouço Homer/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismoRESUMO
Given its high temperature stability, oxidation-, corrosion- and wear-resistance, and ferromagnetic properties, Nickel (Ni) is one of the most technologically important metals. This article reports that pure and nanocrystalline (Ni) films with excellent mechanical and magnetic properties can be additively printed at room environment without any high-temperature post-processing. The printing process is based on a nozzle-based electrochemical deposition from the classical Watt's bath. The printed Ni film showed a preferred (220) and (111) texture based on x-ray diffraction spectra. The printed Ni film had close to bulk electrical conductivity; its indentation elastic modulus and hardness was measured to be 203 ± 6.7 GPa and 6.27 ± 0.34 GPa, respectively. Magnetoresistance, magnetic hysteresis loop, and magnetic domain imaging showed promising results of the printed Ni for functional applications.
RESUMO
Bound calcium ions stabilize many nonenveloped virions. Loss of Ca2+ from these particles appears to be a regulated part of entry or uncoating. The outer layer of an infectious rotavirus triple-layered particle (TLP) comprises a membrane-interacting protein (VP4) anchored by a Ca2+-stabilized protein (VP7). Membrane-coupled conformational changes in VP4 (cleaved to VP8* and VP5*) and dissociation of VP4 and VP7 accompany penetration of the double-layered inner capsid particle (DLP) into the cytosol. Removal of Ca2+in vitro strips away both outer layer proteins; we and others have postulated that the loss of Ca2+ triggers molecular events in viral penetration. We have now investigated, with the aid of a fluorescent Ca2+ sensor, the timing of Ca2+ loss from entering virions with respect to the dissociation of VP4 and VP7. In live-cell imaging experiments, distinct fluorescent markers on the DLP and on VP7 report on outer layer dissociation and DLP release. The Ca2+ sensor, placed on VP5*, monitors the Ca2+ concentration within the membrane-bound vesicle enclosing the entering particle. Slow (1-min duration) loss of Ca2+ precedes the onset of VP7 dissociation by about 2 min and DLP release by about 7 min. Coupled with our previous results showing that VP7 loss follows tight binding to the cell surface by about 5 min, these data indicate that Ca2+ loss begins as soon as the particle has become fully engulfed within the uptake vesicle. We discuss the implications of these findings for the molecular mechanism of membrane disruption during viral entry.IMPORTANCE Nonenveloped viruses penetrate into the cytosol of the cells that they infect by disrupting the membrane of an intracellular compartment. The molecular mechanisms of membrane disruption remain largely undefined. Functional reconstitution of infectious rotavirus particles (TLPs) from RNA-containing core particles (DLPs) and the outer layer proteins that deliver them into a cell makes these important pediatric pathogens particularly good models for studying nonenveloped virus entry. We report here how the use of a fluorescent Ca2+ sensor, covalently linked to one of the viral proteins, allows us to establish, using live-cell imaging, the timing of Ca2+ loss from an entering particle and other molecular events in the entry pathway. Specific Ca2+ binding stabilizes many other viruses of eukaryotes, and Ca2+ loss appears to be a trigger for steps in penetration or uncoating. The experimental design that we describe may be useful for studying entry of other viral pathogens.
Assuntos
Cálcio/metabolismo , Proteínas do Capsídeo/metabolismo , Corantes Fluorescentes/química , Rotavirus/fisiologia , Animais , Antígenos Virais/química , Antígenos Virais/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Linhagem Celular , Citosol/virologia , Microscopia Confocal , Conformação Proteica , Internalização do VírusRESUMO
Luminescent carbon nanomaterials are important materials for sensing, imaging, and display technologies. This work describes the use of microwave heating for the template-assisted preparation of luminescent carbon nanofibers (CNFs) from the reaction of a range of beverage-related precursors with the nitrogen-rich polyethyleneimine. Highly luminescent robust carbon fibers that were 10 to 30 m in length and had a diameter of 200 nm were obtained under moderate conditions of temperature (250-260 °C) and a short reaction time (6 min). The high aspect ratio fibers showed wavelength-dependent emission that can be readily imaged using epifluorescence. The development of these multi-emissive one-dimensional (1D) carbon nanomaterials offers potential for a range of applications.
Assuntos
Bebidas , Carbono/química , Calefação , Luminescência , Micro-Ondas , Nanofibras/química , Polietilenoimina/químicaRESUMO
Further to conventional linear, branched, crosslinked, and dendritic polymers, single chain cyclized/knotted polymers (SCKPs) have emerged as a new class of polymer structure with unique properties. Herein, the development of bacteria-resistant SCKPs is reported and the effect of this structure on the resistance of polymer materials to bacteria is investigated. Four SCKPs were synthesized by reversible addition fragmentation chain transfer (RAFT) homopolymerization of multivinyl monomers (MVMs) and then crosslinked by UV light to form SCKP films. Regardless of MVM type used, the resulting SCKP films showed much higher resistance to bacteria, and up to 75 % less bacterial attachment and biofilm formation, in comparison with the corresponding non-SCKP films. This is due to the altered surface morphology and hydrophobicity of the SCKP films. These results highlight the critical role of the SCKP structure in enhancing the resistance of polymeric materials to bacteria.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Polímeros/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polimerização , Polímeros/síntese química , Polímeros/químicaRESUMO
Fundamental mechanisms of energy storage, corrosion, sensing, and multiple biological functionalities are directly coupled to electrical processes and ionic dynamics at solid-liquid interfaces. In many cases, these processes are spatially inhomogeneous taking place at grain boundaries, step edges, point defects, ion channels, etc and possess complex time and voltage dependent dynamics. This necessitates time-resolved and real-space probing of these phenomena. In this review, we discuss the applications of force-sensitive voltage modulated scanning probe microscopy (SPM) for probing electrical phenomena at solid-liquid interfaces. We first describe the working principles behind electrostatic and Kelvin probe force microscopies (EFM & KPFM) at the gas-solid interface, review the state of the art in advanced KPFM methods and developments to (i) overcome limitations of classical KPFM, (ii) expand the information accessible from KPFM, and (iii) extend KPFM operation to liquid environments. We briefly discuss the theoretical framework of electrical double layer (EDL) forces and dynamics, the implications and breakdown of classical EDL models for highly charged interfaces or under high ion concentrations, and describe recent modifications of the classical EDL theory relevant for understanding nanoscale electrical measurements at the solid-liquid interface. We further review the latest achievements in mapping surface charge, dielectric constants, and electrodynamic and electrochemical processes in liquids. Finally, we outline the key challenges and opportunities that exist in the field of nanoscale electrical measurements in liquid as well as providing a roadmap for the future development of liquid KPFM.
RESUMO
Self-assembling block copolymer (BCP) patterns are one of the main contenders for the fabrication of nanopattern templates in next generation lithography technology. Transforming these templates to hard mark materials is key for pattern transfer and in some cases, involves selectively removing one block from the nanopattern. For poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), a high χ BCP system which could be potentially incorporated into semiconductor nanofabrication, this selective removal is predominantly done by a wet etch/activation process. Conversely, this process has numerous disadvantages including lack of control and high generation of waste leading to high cost. For these reasons, our motivation was to move away from the wet etch process and optimise a dry etch which would overcome the limitations associated with the activation process. The work presented herein shows the development of a selective plasma etch process for the removal of P4VP cores from PS-b-P4VP nanopatterned film. Results have shown that a nitrogen reactive ion etch plasma has a selectivity for P4VP of 2.2:1 and suggest that the position of the nitrogen in the aromatic ring of P4VP plays a key role in this selectivity. In situ plasma etching and x-ray photoelectron spectrometry measurements were made without breaking vacuum, confirming that the nitrogen plasma has selectivity for removal of P4VP over PS.
RESUMO
Recent molecular modeling methods using Markovian descriptions of conformational states of biomolecular systems have led to powerful analysis frameworks that can accurately describe their complex dynamical behavior. In conjunction with enhanced sampling methods, such as replica exchange molecular dynamics (REMD), these frameworks allow the systematic and accurate extraction of transition probabilities between the corresponding states, in the case of Markov state models, and of statistically-optimized transition rates, in the case of the corresponding coarse master equations. However, applying automatically such methods to large molecular dynamics (MD) simulations, with explicit water molecules, remains limited both by the initial ability to identify good candidates for the underlying Markovian states and by the necessity to do so using good collective variables as reaction coordinates that allow the correct counting of inter-state transitions at various lag times. Here, we show that, in cases when representative molecular conformations can be identified for the corresponding Markovian states, and thus their corresponding collective evolution of atomic positions can be calculated along MD trajectories, one can use them to build a new type of simple collective variable, which can be particularly useful in both the correct state assignment and in the subsequent accurate counting of inter-state transition probabilities. In the case of the ubiquitously used root-mean-square deviation (RMSD) of atomic positions, we introduce the relative RMSD (RelRMSD) measure as a good reaction coordinate candidate. We apply this method to the analysis of REMD trajectories of amyloid-forming diphenylalanine (FF) peptides-a system with important nanotechnology and biomedical applications due to its self-assembling and piezoelectric properties-illustrating the use of RelRMSD in extracting its temperature-dependent intrinsic kinetics, without a priori assumptions on the functional form (e.g., Arrhenius or not) of the underlying conformational transition rates. The RelRMSD analysis enables as well a more objective assessment of the convergence of the REMD simulations. This type of collective variable may be generalized to other observables that could accurately capture conformational differences between the underlying Markov states (e.g., distance RMSD, the fraction of native contacts, etc.).
Assuntos
Proteínas Amiloidogênicas/química , Dipeptídeos/química , Cadeias de Markov , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , TemperaturaRESUMO
Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures to e.g. biosensing, electrochemical, electromechanical or electronic applications.
RESUMO
Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction-required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.
RESUMO
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
RESUMO
Cellulose is a sustainable material capable of forming optically active nanoarrays on its surface. We created a composite of cellulose acetate (CA) and graphene oxide (GO), by mixing GO (0.1 mg mL-1) into CA. This was then imprinted with nanoscale surface features that form Bragg-like modes in resonance with the excitation laser when a thin layer of silver is vapor deposited onto the surface of the substrate. The addition of GO leads to improved surface-enhanced Raman scattering (SERS) signal strengths, obtaining an average SERS signal increase of 1.4-fold following the inclusion of GO. The combination of photonic and electromagnetic effects with charge transfer-based processes that support the SERS chemical mechanism and the possible presence of electromagnetic hot spots from the roughened surface results in an enhanced SERS signal strength when GO is added. This work shows the potential for nanoimprinted graphene oxide/cellulose acetate composites as flexible sensor platforms to detect target molecules.
RESUMO
Three-dimensional (3D) (bio)printing technology has boosted the advancement of the biomedical field. However, tissue engineering is an evolving field and (bio)printing biomimetic constructions for tissue formation is still a challenge. As a new methodology to facilitate the construction of more complex structures, we suggest the use of the fluid-phase 3D printing to pattern the scaffold's properties. The methodology consists of an exchangeable fluid-phase printing medium in which the constructions are fabricated and patterned during the printing process. Using the fluid-phase methodology, the biological and mechanical properties can be tailored promoting cell behaviour guidance and compartmentalization. In this study, we first assessed different formulations of alginate/gelatin to create a stable substrate capable to promote massive cell colonizationin vitroover time. Overall, formulations with lower gelatin content and 2-(N-morpholino)ethanesulfonic acid (MES) buffer as a solvent showed better stability under cell culture conditions and enhanced U2OS cell growth. Next, the fluid-phase showed better printing fidelity and resolution in comparison to air printing as it diminished the collapsing and the spread of the hydrogel strand. In sequence, the fluid-phase methodology was used to create functionalized alginate-gelatin-arginylglycylaspartic acid peptide (RGD) hydrogels via carbodiimides chemistry. The alginate-gelatin-RGD hydrogels showed an increase of 2.97-fold in cell growth and more spread substrate colonization in comparison to alginate-gelatin hydrogel. Moreover, the fluid-phase methodology was used to add RGD molecules to pre-determined parts of the alginate-gelatin substrate during the printing process promoting U2OS cell compartmentalization. In addition, different substrate stiffnesses were also created via fluid-phase by crosslinking the hydrogel with different concentrations of CaCl2during the printing process. As a result, the U2OS cells were also compartmentalized on the stiffer parts of the printings. Finally, our results showed that by combining stiffer hydrogel with RGD increasing concentrations we can create a synergetic effect and boost cell metabolism by up to 3.17-fold. This work presents an idea of a new printing process for tailoring multiple parameters in hydrogel substrates by using fluid-phase to generate more faithful replication of thein vivoenvironment.
Assuntos
Alginatos , Proliferação de Células , Gelatina , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alginatos/química , Gelatina/química , Hidrogéis/química , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Oligopeptídeos/química , Bioimpressão/métodos , Materiais Biocompatíveis/química , Ácido Glucurônico/químicaRESUMO
The use of sustainable and safe materials is increasingly in demand for the creation of photonic-based technology. Piezoelectric peptide nanotubes make up a class of safe and sustainable materials. We show that these materials can generate piezoelectric charge through the deformation of oriented molecular dipoles when the tube length is flexed through the application of sound energy. Through the combination of peptide nanotubes with plasmon active nanomaterials, harvesting of low-frequency acoustic sound waves was achieved. This effect was applied to boost surface-enhanced Raman scattering signal detection of analytes, including glucose. This work demonstrates the potential of utilizing sound to boost sensing by using piezoelectric materials.
RESUMO
How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts. We also explored the persistence of the inhibition of LTP by different synaptotoxic tau preparations. A single intracerebral injection of aggregates of recombinant human tau that had been prepared by either sonication of fibrils (SτAs) or disulfide bond formation (oTau) rapidly and persistently inhibited LTP in rat hippocampus. The threshold for the acute inhibitory effect of oTau was lowered in amyloid precursor protein (APP)-transgenic rats. A single injection of synaptotoxic tau-containing AD or Pick's disease brain extracts also inhibited LTP, for over two weeks. Remarkably, the persistent disruption of synaptic plasticity by patient-derived brain tau was rapidly reversed by a single intracerebral injection of different anti-tau monoclonal antibodies, including one directed to a specific human tau amino acid sequence. We conclude that patient-derived LTP-disrupting tau species persist in the brain for weeks, maintaining their neuroactivity often in concert with Aß. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.