Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475076

RESUMO

The proposed novel algorithm named decision-making algorithm with geographic mobility (DMAGM) includes detailed analysis of decision-making for cognitive radio (CR) that considers a multivariable algorithm with geographic mobility (GM). Scarce research work considers the analysis of GM in depth, even though it plays a crucial role to improve communication performance. The DMAGM considerably reduces latency in order to accurately determine the best communication channels and includes GM analysis, which is not addressed in other algorithms found in the literature. The DMAGM was evaluated and validated by simulating a cognitive radio network that comprises a base station (BS), primary users (PUs), and CRs considering random arrivals and disappearance of mobile devices. The proposed algorithm exhibits better performance, through the reduction in latency and computational complexity, than other algorithms used for comparison using 200 channel tests per simulation. The DMAGM significantly reduces the decision-making process from 12.77% to 94.27% compared with ATDDiM, FAHP, AHP, and Dijkstra algorithms in terms of latency reduction. An improved version of the DMAGM is also proposed where feedback of the output is incorporated. This version is named feedback-decision-making algorithm with geographic mobility (FDMAGM), and it shows that a feedback system has the advantage of being able to continually adjust and adapt based on the feedback received. In addition, the feedback version helps to identify and correct problems, which can be beneficial in situations where the quality of communication is critical. Despite the fact that the FDMAGM may take longer than the DMAGM to calculate the best communication channel, constant feedback improves efficiency and effectiveness over time. Both the DMAGM and the FDMAGM improve performance in practical scenarios, the former in terms of latency and the latter in terms of accuracy and stability.

2.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770389

RESUMO

In this article, a combination of rectangular loop array and slot radiator for multiband applications is presented. The antenna is configured by arranging, concentrically, a set of rectangular loop radiators excited by electromagnetic coupling provided by a dumbbell slot. The size of the loops is calculated to obtain the desired resonant frequencies, which are almost independent of the adjacent rings. The exciting slot is designed to operate in a wideband frequency range to cover the upper desired resonance. In addition, to obtain directive radiation patterns, a reflector shaped like a box is introduced, giving a stable gain, radiation pattern shape, and port matching at the selected frequencies. The configuration presents great results, since to the authors' knowledge, even a similar configuration given in the open literature presents some disadvantages compared to this one; moreover, not just any structure can be employed as the resonating elements, obtaining multiband behavior at the same time.

3.
ScientificWorldJournal ; 2014: 381305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177722

RESUMO

In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.


Assuntos
Algoritmos , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA