Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Clin Microbiol ; 61(3): e0147822, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757183

RESUMO

While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Canamicina , Isoniazida/farmacologia , Capreomicina , Amicacina/farmacologia , Rifampina/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico
2.
Antimicrob Agents Chemother ; 66(7): e0032222, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35758754

RESUMO

Studies have shown that variants in bedaquiline-resistance genes can occur in isolates from bedaquiline-naive patients. We assessed the prevalence of variants in all bedaquiline-candidate-resistance genes in bedaquiline-naive patients, investigated the association between these variants and lineage, and the effect on phenotype. We used whole-genome sequencing to identify variants in bedaquiline-resistance genes in isolates from 509 bedaquiline treatment naive South African tuberculosis patients. A phylogenetic tree was constructed to investigate the association with the isolate lineage background. Bedaquiline MIC was determined using the UKMYC6 microtiter assay. Variants were identified in 502 of 509 isolates (98.6%), with the highest (85%) prevalence of variants in the Rv0676c (mmpL5) gene. We identified 36 unique variants, including 19 variants not reported previously. Only four isolates had a bedaquiline MIC equal to or above the epidemiological cut-off value of 0.25 µg/mL. Phylogenetic analysis showed that 14 of the 15 variants observed more than once occurred monophyletically in one Mycobacterium tuberculosis (sub)lineage. The bedaquiline MIC differed between isolates belonging to lineage 2 and 4 (Fisher's exact test, P = 0.0004). The prevalence of variants in bedaquiline-resistance genes in isolates from bedaquiline-naive patients is high, but very few (<2%) isolates were phenotypically resistant. We found an association between variants in bedaquiline resistance genes and Mycobacterium tuberculosis (sub)lineage, resulting in a lineage-dependent difference in bedaquiline phenotype. Future studies should investigate the impact of the presence of variants on bedaquiline-resistance acquisition and treatment outcome.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Filogenia , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
PLoS Biol ; 16(12): e3000099, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30596645

RESUMO

A personalized approach based on a patient's or pathogen's unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the "Open-Stand.org principles for collaborative open standards development." With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews.


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Animais , Comunicação , Biologia Computacional/normas , Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão/tendências , Reprodutibilidade dos Testes , Análise de Sequência de DNA/normas , Software , Fluxo de Trabalho
4.
BMC Infect Dis ; 21(1): 781, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372793

RESUMO

BACKGROUND: Detection of tuberculosis disease (TB) and timely identification of Mycobacterium tuberculosis (Mtb) strains that are resistant to treatment are key to halting tuberculosis transmission, improving treatment outcomes, and reducing mortality. METHODS: We used 332,657 Xpert MTB/RIF assay results, captured as part of the Myanmar Data Utilization Project, to characterize Mtb test positivity and rifampicin resistance by both age and sex, and to evaluate risk factors associated with rifampicin resistance. RESULTS: Overall, 70% of individuals diagnosed with TB were males. Test positivity was higher among males (47%) compared to females (39%). The highest positivity by age occurred among individuals aged 16-20, with test positivity for females (65%) higher than for males (57%). Although a greater absolute number of males were rifampicin resistant, a greater proportion of females (11.4%) were rifampicin resistant as compared to males (9.3%). In the multivariate model, history of previous treatment, age less than 30, testing in the Yangon region, and female sex were significantly positively associated with rifampicin resistance after adjusting for HIV status and year test was performed. CONCLUSIONS: Our results indicate that young adults were more likely to test positive for TB and be identified as rifampicin resistant compared to older adults.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Tuberculose , Idoso , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Humanos , Masculino , Mianmar/epidemiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Sensibilidade e Especificidade , Distribuição por Sexo , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Pulmonar/tratamento farmacológico , Adulto Jovem
5.
J Clin Microbiol ; 58(10)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32727827

RESUMO

Targeted next-generation sequencing (tNGS) has emerged as a comprehensive alternative to existing methods for drug susceptibility testing (DST) of Mycobacterium tuberculosis from patient sputum samples for clinical diagnosis of drug-resistant tuberculosis (DR-TB). However, the complexity of sequencing platforms has limited their uptake in low-resource settings. The goal of this study was to evaluate the use of the tNGS-based DST solution Genoscreen Deeplex Myc-TB, for use on the compact, low-cost Oxford Nanopore Technologies MinION sequencer. One hundred four DNA samples extracted from smear-positive sputum sediments, previously sequenced using the Deeplex assay on an Illumina MiniSeq, were resequenced on MinION after applying a custom library preparation. MinION read quality, mapping statistics, and variant calling were computed using an in-house pipeline and compared to the reference MiniSeq data. The average percentage of MinION reads mapped to an H37RV reference genome was 90.8%, versus 99.5% on MiniSeq. The mean depths of coverage were 4,151× and 4,177× on MinION and MiniSeq, respectively, with heterogeneous distribution across targeted genes. Composite reference coverage breadth was >99% for both platforms. We observed full concordance between technologies in reporting the clinically relevant drug-resistant markers, including full gene deletions. In conclusion, we demonstrated that the workflow and sequencing data obtained from Deeplex on MinION are comparable to those for the MiniSeq, despite the higher raw error rates on MinION, with the added advantage of MinION's portability, versatility, and low capital costs. Targeted NGS on MinION is a promising DST solution for rapidly providing clinically relevant data to manage complex DR-TB cases.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico
6.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32817085

RESUMO

Despite the WHO's call for universal drug susceptibility testing for all patients being evaluated for tuberculosis (TB), a lack of rapid diagnostic tests which can fully describe TB resistance patterns is a major challenge in ensuring that all persons diagnosed with drug-resistant TB are started on an appropriate treatment regime. We evaluated the accuracy of the Akonni Biosystems XDR-TB TruArray and lateral-flow cell (XDR-LFC), a novel multiplex assay to simultaneously detect mutations across seven genes that confer resistance to both first- and second-line anti-TB drugs. The XDR-LFC includes 271 discrete three-dimensional gel elements with target-specific probes for identifying mutations in katG, inhA promoter, and ahpC promoter (isoniazid), rpoB (rifampin), gyrA (fluoroquinolones), rrs and eis promoter (kanamycin), and rrs (capreomycin and amikacin). We evaluated XDR-LFC performance with 87 phenotypically and genotypically characterized clinical Mycobacterium tuberculosis isolates. The overall assay levels of accuracy for mutation detection in specific genes were 98.6% for eis promoter and 100.0% for the genes katG, inhA promoter, ahpC promoter, rpoB, gyrA, and rrs The sensitivity and specificity against phenotypic reference were 100% and 100% for isoniazid, 98.4% and 50% for rifampin (specificity increased to 100% once the strains with documented low-level resistance mutations in rpoB were excluded), 96.2% and 100% for fluoroquinolones, 92.6% and 100% for kanamycin, 93.9% and 97.4% for capreomycin, and 80% and 100% for amikacin. The XDR-LFC solution appears to be a promising new tool for accurate detection of resistance to both first- and second-line anti-TB drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Humanos , Laboratórios , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
7.
BMC Public Health ; 20(1): 81, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959145

RESUMO

BACKGROUND: Mobile health (mHealth) interventions have the potential to improve health through patient education and provider engagement while increasing efficiency and lowering costs. This raises the question of whether disparities in access to mobile technology could accentuate disparities in mHealth mediated care. This study addresses whether programs planning to implement mHealth interventions risk creating or perpetuating health disparities based on inequalities in smartphone ownership. METHODS: Video Directly Observed Therapy (VDOT) is an mHealth intervention for monitoring tuberculosis (TB) treatment adherence through videos sent by patients to their healthcare provider using smartphones. We conducted secondary analyses of data from a single-arm trial of VDOT for TB treatment monitoring by San Diego, San Francisco, and New York City health departments. Baseline and follow-up treatment interviews were used to assess participant smartphone ownership, sociodemographics and TB treatment perceptions. Univariate and multivariable logistic regression analyses were used to identify correlates of smartphone ownership. RESULTS: Of the 151 participants enrolled, mean age was 41 years (range: 18-87 years) and 41.1% were female. Participants mostly identified as Asian (45.0%) or Hispanic/Latino (29.8%); 57.8% had at most a high school education. At baseline, 30.4% did not own a smartphone, which was similar across sites. Older participants (adjusted odds ratio [AOR] = 1.09 per year, 95% confidence interval [CI]: 1.05-1.12), males (AOR = 2.86, 95% CI: 1.04-7.86), participants having at most a high school education (AOR = 4.48, 95% CI: 1.57-12.80), and those with an annual income below $10,000 (AOR = 3.06, 95% CI: 1.19, 7.89) had higher odds of not owning a smartphone. CONCLUSIONS: Approximately one-third of TB patients in three large United States of America (USA) cities lacked smartphones prior to the study. Patients who were older, male, less educated, or had lower annual income were less likely to own smartphones and could be denied access to mHealth interventions if personal smartphone ownership is required.


Assuntos
Disparidades em Assistência à Saúde , Propriedade/estatística & dados numéricos , Smartphone/estatística & dados numéricos , Telemedicina , Tuberculose/terapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Diretamente Observada/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , São Francisco , Fatores Socioeconômicos , Gravação de Videoteipe , Adulto Jovem
8.
J Infect Dis ; 220(220 Suppl 3): S126-S135, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31593599

RESUMO

The development and implementation of rapid molecular diagnostics for tuberculosis (TB) drug-susceptibility testing is critical to inform treatment of patients and to prevent the emergence and spread of resistance. Optimal trial planning for existing tests and those in development will be critical to rapidly gather the evidence necessary to inform World Health Organization review and to support potential policy recommendations. The evidence necessary includes an assessment of the performance for TB and resistance detection as well as an assessment of the operational characteristics of these platforms. The performance assessment should include analytical studies to confirm the limit of detection and assay ability to detect mutations conferring resistance across globally representative strains. The analytical evaluation is typically followed by multisite clinical evaluation studies to confirm diagnostic performance in sites and populations of intended use. This paper summarizes the considerations for the design of these analytical and clinical studies.


Assuntos
Bioensaio/normas , Testes de Sensibilidade Microbiana/normas , Mycobacterium tuberculosis/efeitos dos fármacos , Guias de Prática Clínica como Assunto , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/uso terapêutico , Biomarcadores/análise , Hemocultura/normas , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/patogenicidade , Padrões de Referência , Projetos de Pesquisa , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/fisiopatologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/fisiopatologia , Organização Mundial da Saúde
9.
Clin Infect Dis ; 69(9): 1631-1633, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30883637

RESUMO

Tuberculosis is the primary infectious disease killer worldwide, with a growing threat from multidrug-resistant cases. Unfortunately, classic growth-based phenotypic drug susceptibility testing (DST) remains difficult, costly, and time consuming, while current rapid molecular testing options are limited by the diversity of antimicrobial-resistant genotypes that can be detected at once. Next-generation sequencing (NGS) offers the opportunity for rapid, comprehensive DST without the time or cost burden of phenotypic tests and can provide useful information for global surveillance. As access to NGS expands, it will be important to ensure that results are communicated clearly, consistent, comparable between laboratories, and associated with clear guidance on clinical interpretation of results. In this viewpoint article, we summarize 2 expert workshops regarding a standardized report format, focusing on relevant variables, terminology, and required minimal elements for clinical and laboratory reports with a proposed standardized template for clinical reporting NGS results for Mycobacterium tuberculosis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética
10.
PLoS Med ; 16(4): e1002794, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039166

RESUMO

BACKGROUND: Accurate, comprehensive, and timely detection of drug-resistant tuberculosis (TB) is essential to inform patient treatment and enable public health surveillance. This is crucial for effective control of TB globally. Whole-genome sequencing (WGS) and targeted next-generation sequencing (NGS) approaches have potential as rapid in vitro diagnostics (IVDs), but the complexity of workflows, interpretation of results, high costs, and vulnerability of instrumentation have been barriers to broad uptake outside of reference laboratories, especially in low- and middle-income countries. A new, solid-state, tabletop sequencing instrument, Illumina iSeq100, has the potential to decentralize NGS for individual patient care. METHODS AND FINDINGS: In this study, we evaluated WGS and targeted NGS for TB on both the new iSeq100 and the widely used MiSeq (both manufactured by Illumina) and compared sequencing performance, costs, and usability. We utilized DNA libraries produced from Mycobacterium tuberculosis clinical isolates for the evaluation. We conducted WGS on three strains and observed equivalent uniform genome coverage with both platforms and found the depth of coverage obtained was consistent with the expected data output. Utilizing the standardized, cloud-based ReSeqTB bioinformatics pipeline for variant analysis, we found the two platforms to have 94.0% (CI 93.1%-94.8%) agreement, in comparison to 97.6% (CI 97%-98.1%) agreement for the same libraries on two MiSeq instruments. For the targeted NGS approach, 46 M. tuberculosis-specific amplicon libraries had 99.6% (CI 98.0%-99.9%) agreement between the iSeq100 and MiSeq data sets in drug resistance-associated SNPs. The upfront capital costs are almost 5-fold lower for the iSeq100 ($19,900 USD) platform in comparison to the MiSeq ($99,000 USD); however, because of difference in the batching capabilities, the price per sample for WGS was higher on the iSeq100. For WGS of M. tuberculosis at the minimum depth of coverage of 30x, the cost per sample on the iSeq100 was $69.44 USD versus $28.21 USD on the MiSeq, assuming a 2 × 150 bp run on a v3 kit. In terms of ease of use, the sequencing workflow of iSeq100 has been optimized to only require 27 minutes total of hands-on time pre- and post-run, and the maintenance is simplified by a single-use cartridge-based fluidic system. As these are the first sequencing attempts on the iSeq100 for M. tuberculosis, the sequencing pool loading concentration still needs optimization, which will affect sequencing error and depth of coverage. Additionally, the costs are based on current equipment and reagent costs, which are subject to change. CONCLUSIONS: The iSeq100 instrument is capable of running existing TB WGS and targeted NGS library preparations with comparable accuracy to the MiSeq. The iSeq100 has reduced sequencing workflow hands-on time and is able to deliver sequencing results in <24 hours. Reduced capital and maintenance costs and lower-throughput capabilities also give the iSeq100 an advantage over MiSeq in settings of individualized care but not in high-throughput settings such as reference laboratories, where sample batching can be optimized to minimize cost at the expense of workflow complexity and time.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Análise Custo-Benefício , DNA Bacteriano/análise , Sequenciamento de Nucleotídeos em Larga Escala/economia , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Fatores de Tempo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31085512

RESUMO

Clinical phenotypic fluoroquinolone susceptibility testing of Mycobacterium tuberculosis is currently based on M. tuberculosis growth at a single critical concentration, which provides limited information for a nuanced clinical response. We propose using specific resistance-conferring M. tuberculosis mutations in gyrA together with population pharmacokinetic and pharmacodynamic modeling as a novel tool to better inform fluoroquinolone treatment decisions. We sequenced the gyrA resistance-determining region of 138 clinical M. tuberculosis isolates collected from India, Moldova, Philippines, and South Africa and then determined each strain's MIC against ofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Strains with specific gyrA single-nucleotide polymorphisms (SNPs) were grouped into high or low drug-specific resistance categories based on their empirically measured MICs. Published population pharmacokinetic models were then used to explore the pharmacokinetics and pharmacodynamics of each fluoroquinolone relative to the empirical MIC distribution for each resistance category to make predictions about the likelihood of patients achieving defined therapeutic targets. In patients infected with M. tuberculosis isolates containing SNPs associated with a fluoroquinolone-specific low-level increase in MIC, models suggest increased fluoroquinolone dosing improved the probability of achieving therapeutic targets for gatifloxacin and moxifloxacin but not for levofloxacin and ofloxacin. In contrast, among patients with isolates harboring SNPs associated with a high-level increase in MIC, increased dosing of levofloxacin, moxifloxacin, gatifloxacin, or ofloxacin did not meaningfully improve the probability of therapeutic target attainment. We demonstrated that quantifiable fluoroquinolone drug resistance phenotypes could be predicted from rapidly detectable gyrA SNPs and used to support dosing decisions based on the likelihood of patients reaching therapeutic targets. Our findings provide further supporting evidence for the moxifloxacin clinical breakpoint recently established by the World Health Organization.


Assuntos
Antituberculosos/farmacologia , Fluoroquinolonas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Gatifloxacina/farmacologia , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/genética , Ofloxacino/farmacologia , Polimorfismo de Nucleotídeo Único/genética
12.
BMC Infect Dis ; 18(1): 102, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499645

RESUMO

BACKGROUND: Growth-based drug susceptibility testing (DST) is the reference standard for diagnosing drug-resistant tuberculosis (TB), but standard time to result (TTR) is typically ≥ 3 weeks. Rapid tests can reduce that TTR to days or hours, but accuracy may be lowered. In addition to the TTR and test accuracy, the cost of a diagnostic test may affect whether it is adopted in clinical settings. We examine the cost-effectiveness of rapid diagnostics for extremely drug-resistant TB (XDR-TB) in three different high-prevalence settings. METHODS: 1128 patients with confirmed TB were enrolled at clinics in Mumbai, India; Chisinau, Moldova; and Port Elizabeth, South Africa. Patient sputum samples underwent DST for first and second line TB drugs using 2 growth-based (MGIT, MODS) and 2 molecular (Pyrosequencing [PSQ], line-probe assays [LPA]) assays. TTR was the primary measure of effectiveness. Sensitivity and specificity were also evaluated. The cost to perform each test at each site was recorded and included test-specific materials, personnel, and equipment costs. Incremental cost-effectiveness ratios were calculated in terms of $/day saved. Sensitivity analyses examine the impact of batch size, equipment, and personnel costs. RESULTS: Our prior results indicated that the LPA and PSQ returned results in a little over 1 day. Mean cost per sample without equipment or overhead was $23, $28, $33, and $41 for the MODS, MGIT, PSQ, and LPA, respectively. For diagnosing XDR-TB, MODS was the most accurate, followed by PSQ, and LPA. MODS was quicker and less costly than MGIT. PSQ and LPA were considerably faster but cost more than MODS. Batch size and personnel costs were the main drivers of cost variation. CONCLUSIONS: Multiple factors must be weighed when selecting a test for diagnosis of XDR-TB. Rapid tests can greatly improve the time required to diagnose drug-resistant TB, potentially improving treatment success, and preventing the spread of XDR-TB. Faster time to result must be weighed against the potential for reduced accuracy, and increased costs. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02170441 .


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/economia , Custos de Cuidados de Saúde , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Índia , Testes de Sensibilidade Microbiana/economia , Moldávia , Sensibilidade e Especificidade , África do Sul
13.
Clin Infect Dis ; 65(5): 772-778, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475735

RESUMO

BACKGROUND: Previous retrospective and in vitro studies suggest that use of later-generation fluoroquinolones may reduce mortality risk and improve treatment outcomes for drug-resistant tuberculosis (TB) patients, including individuals resistant to a fluoroquinolone. Meta-analysis results are mixed and few studies have examined this relationship prospectively. METHODS: As part of a comparative diagnostic study, we conducted a prospective cohort study with 834 Mycobacterium tuberculosis-infected patients from selected hospitals and clinics with high prevalence of drug-resistant TB in India, Moldova, and South Africa. We used Cox proportional hazards regression models to assess the association between later-generation fluoroquinolone (moxifloxacin or levofloxacin) use and patient mortality, adjusting for risk factors typically associated with poor treatment outcomes. RESULTS: After adjusting for phenotypic resistance profile, low body mass index (<18.5 kg/m2), human immunodeficiency virus status, and study site, participants treated with a later-generation fluoroquinolone had half the risk of mortality compared with participants either not treated with any fluoroquinolone or treated only with an earlier-generation fluoroquinolone (adjusted hazard ratio, 0.46 [95% confidence interval, .26-.80]) during follow-up. CONCLUSIONS: Use of later-generation fluoroquinolones significantly reduced patient mortality risk in our cohort, suggesting that removal of a later-generation fluoroquinolone from a treatment regimen because of demonstrated resistance to an earlier-generation fluoroquinolone might increase mortality risk. Further studies should evaluate the effectiveness of later-generation fluoroquinolones among patients with and without resistance to early-generation fluoroquinolones. CLINICAL TRIALS REGISTRATION: NCT02170441.


Assuntos
Antituberculosos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/mortalidade , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Fatores de Risco
14.
Eur Respir J ; 50(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29284687

RESUMO

A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype-phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6-90.9%), while for isoniazid it was 78.2% (77.4-79.0%) and their specificities were 96.3% (95.7-96.8%) and 94.4% (93.1-95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1-70.6%) for capreomycin to 88.2% (85.1-90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1-92.5%) for moxifloxacin to 99.5% (99.0-99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.


Assuntos
Antituberculosos/farmacologia , Interpretação Estatística de Dados , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Fenótipo , Análise de Sequência de DNA , Revisões Sistemáticas como Assunto , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
15.
J Clin Microbiol ; 55(6): 1928-1937, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28404672

RESUMO

Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality during treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT02170441.).


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas Bacteriológicas , Criança , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Medição de Risco , Análise de Sequência de DNA , Análise de Sobrevida , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto Jovem
16.
J Clin Microbiol ; 54(4): 912-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26763971

RESUMO

Accurate identification of drug-resistantMycobacterium tuberculosisis imperative for effective treatment and subsequent reduction in disease transmission. Line probe assays rapidly detect mutations associated with resistance and wild-type sequences associated with susceptibility. Examination of molecular-level performance is necessary for improved assay result interpretation and for continued diagnostic development. Using data collected from a large, multisite diagnostic study, probe hybridization results from line probe assays, MTBDRplusand MTBDRsl, were compared to those of sequencing, and the diagnostic performance of each individual mutation and wild-type probe was assessed. Line probe assay results classified as resistant due to the absence of wild-type probe hybridization were compared to those of sequencing to determine if novel mutations were inhibiting wild-type probe hybridization. The contribution of absent wild-type probe hybridization to the detection of drug resistance was assessed via comparison to a phenotypic reference standard. In our study, mutation probes demonstrated significantly higher specificities than wild-type probes and wild-type probes demonstrated marginally higher sensitivities than mutation probes, an ideal combination for detecting the presence of resistance conferring mutations while yielding the fewest number of false-positive results. The absence of wild-type probe hybridization without mutation probe hybridization was determined to be primarily the result of failure of mutation probe hybridization and not the result of novel or rare mutations. Compared to phenotypic culture-based drug susceptibility testing, the absence of wild-type probe hybridization without mutation probe hybridization significantly contributed to the detection of phenotypic rifampin and fluoroquinolone resistance with negligible increases in false-positive results.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Hibridização de Ácido Nucleico , Estudos Prospectivos , Sensibilidade e Especificidade , Análise de Sequência de DNA
17.
J Clin Microbiol ; 54(8): 2058-67, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27225403

RESUMO

Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool.


Assuntos
Técnicas de Genotipagem/métodos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Manejo de Espécimes/métodos , Escarro/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Preparações Farmacêuticas , Projetos Piloto , Fatores de Tempo , Adulto Jovem
18.
BMC Infect Dis ; 16: 458, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27576542

RESUMO

BACKGROUND: Rapid molecular diagnostics, with their ability to quickly identify genetic mutations associated with drug resistance in Mycobacterium tuberculosis clinical specimens, have great potential as tools to control multi- and extensively drug-resistant tuberculosis (M/XDR-TB). The Qiagen PyroMark Q96 ID system is a commercially available pyrosequencing (PSQ) platform that has been validated for rapid M/XDR-TB diagnosis. However, the details of the assay's diagnostic and technical performance have yet to be thoroughly investigated in diverse clinical environments. METHODS: This study evaluates the diagnostic performance of the PSQ assay for 1128 clinical specimens from patients from three areas of high TB burden. We report on the diagnostic performance of the PSQ assay between the three sites and identify variables associated with poor PSQ technical performance. RESULTS: In India, the sensitivity of the PSQ assay ranged from 89 to 98 % for the detection of phenotypic resistance to isoniazid, rifampicin, fluoroquinolones, and the injectables. In Moldova, assay sensitivity ranged from 7 to 94 %, and in South Africa, assay sensitivity ranged from 71 to 92 %. Specificity was high (94-100 %) across all sites. The addition of eis promoter sequencing information greatly improved the sensitivity of kanamycin resistance detection in Moldova (7 % to 79 %). Nearly all (89.4 %) sequencing reactions conducted on smear-positive, culture-positive specimens and most (70.8 %) reactions conducted on smear-negative, culture-positive specimens yielded valid PSQ reads. An investigation into the variables influencing sequencing failures indicated smear negativity, culture negativity, site (Moldova), and sequencing of the rpoB, gyrA, and rrs genes were highly associated with poor PSQ technical performance (adj. OR > 2.0). CONCLUSIONS: This study has important implications for the global implementation of PSQ as a molecular TB diagnostic, as it demonstrates how regional factors may impact PSQ diagnostic performance, while underscoring potential gene targets for optimization to improve overall PSQ assay technical performance. TRIAL REGISTRATION: ClinicalTrials.gov ( #NCT02170441 ). Registered 12 June 2014.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Fluoroquinolonas , Genes Bacterianos , Humanos , Isoniazida/farmacologia , Canamicina/farmacologia , Resistência a Canamicina/genética , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular , Tipagem Molecular , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Regiões Promotoras Genéticas , Rifampina/farmacologia , Sensibilidade e Especificidade , Análise de Sequência de DNA
19.
Antimicrob Agents Chemother ; 59(1): 414-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367911

RESUMO

Reliable molecular diagnostics, which detect specific mutations associated with drug resistance, are promising technologies for the rapid identification and monitoring of drug resistance in Mycobacterium tuberculosis isolates. Pyrosequencing (PSQ) has the ability to detect mutations associated with first- and second-line anti-tuberculosis (TB) drugs, with the additional advantage of being rapidly adaptable for the identification of new mutations. The aim of this project was to evaluate the performance of PSQ in predicting phenotypic drug resistance in multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) clinical isolates from India, South Africa, Moldova, and the Philippines. A total of 187 archived isolates were run through a PSQ assay in order to identify M. tuberculosis (via the IS6110 marker), and to detect mutations associated with M/XDR-TB within small stretches of nucleotides in selected loci. The molecular targets included katG, the inhA promoter and the ahpC-oxyR intergenic region for isoniazid (INH) resistance; the rpoB core region for rifampin (RIF) resistance; gyrA for fluoroquinolone (FQ) resistance; and rrs for amikacin (AMK), capreomycin (CAP), and kanamycin (KAN) resistance. PSQ data were compared to phenotypic mycobacterial growth indicator tube (MGIT) 960 drug susceptibility testing results for performance analysis. The PSQ assay illustrated good sensitivity for the detection of resistance to INH (94%), RIF (96%), FQ (93%), AMK (84%), CAP (88%), and KAN (68%). The specificities of the assay were 96% for INH, 100% for RIF, FQ, AMK, and KAN, and 97% for CAP. PSQ is a highly efficient diagnostic tool that reveals specific nucleotide changes associated with resistance to the first- and second-line anti-TB drug medications. This methodology has the potential to be linked to mutation-specific clinical interpretation algorithms for rapid treatment decisions.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/genética , Sequência de Bases , Catalase/genética , DNA Girase/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Isoniazida/uso terapêutico , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Oxirredutases/genética , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA
20.
J Clin Microbiol ; 52(2): 475-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478476

RESUMO

Treating extensively drug-resistant (XDR) tuberculosis (TB) is a serious challenge. Culture-based drug susceptibility testing (DST) may take 4 weeks or longer from specimen collection to the availability of results. We developed a pyrosequencing (PSQ) assay including eight subassays for the rapid identification of Mycobacterium tuberculosis complex (MTBC) and concurrent detection of mutations associated with resistance to drugs defining XDR TB. The entire procedure, from DNA extraction to the availability of results, was accomplished within 6 h. The assay was validated for testing clinical isolates and clinical specimens, which improves the turnaround time for molecular DST and maximizes the benefit of using molecular testing. A total of 130 clinical isolates and 129 clinical specimens were studied. The correlations between the PSQ results and the phenotypic DST results were 94.3% for isoniazid, 98.7% for rifampin, 97.6% for quinolones (ofloxacin, levofloxacin, or moxifloxacin), 99.2% for amikacin, 99.2% for capreomycin, and 96.4% for kanamycin. For testing clinical specimens, the PSQ assay yielded a 98.4% sensitivity for detecting MTBC and a 95.8% sensitivity for generating complete sequencing results from all subassays. The PSQ assay was able to rapidly and accurately detect drug resistance mutations with the sequence information provided, which allows further study of the association of drug resistance or susceptibility with each mutation and the accumulation of such knowledge for future interpretation of results. Thus, reporting of false resistance for mutations known not to confer resistance can be prevented, which is a significant benefit of the assay over existing molecular diagnostic methods endorsed by the World Health Organization.


Assuntos
Técnicas Bacteriológicas/métodos , DNA Bacteriano/genética , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Análise de Sequência de DNA , DNA Bacteriano/química , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Humanos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA