Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(5): 3041-3056, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38623037

RESUMO

Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.


Assuntos
Imunização , Nanofibras , Peptídeos , Animais , Administração Oral , Nanofibras/química , Peptídeos/imunologia , Peptídeos/química , Peptídeos/administração & dosagem , Camundongos , Imunização/métodos , Epitopos/imunologia , Feminino , Camundongos Endogâmicos C57BL , Colite/imunologia , Colite/prevenção & controle , Colite/induzido quimicamente
2.
Biomater Sci ; 11(5): 1625-1647, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36723064

RESUMO

Mucosal vaccines are receiving increasing interest both for protecting against infectious diseases and for inducing therapeutic immune responses to treat non-infectious diseases. However, the mucosal barriers of the lungs, gastrointestinal tract, genitourinary tract, nasal, and oral tissues each present unique challenges for constructing efficacious vaccines. Vaccination through each of these mucosae requires transport through the mucus and across specialized epithelia to reach tissue-specific immune cells and lymphoid structures, necessitating finely tuned and multifunctional strategies. Serving as inspiration for mucosal vaccine design, pathogens have evolved elaborate, diverse, and multipronged approaches to penetrate and infect mucosae. This review is focused on biomaterials-based strategies, many inspired by pathogens, for designing mucosal vaccine platforms. Passive and active technologies are discussed, along with the microbial processes that they seek to mimic.


Assuntos
Imunidade nas Mucosas , Vacinas , Vacinação , Mucosa
3.
Nat Biomed Eng ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012308

RESUMO

Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.

4.
Sci Adv ; 8(38): eabq0273, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149967

RESUMO

To develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120. Immunization with Q11-conjugated gp120 vaccine (gp120-Q11) demonstrated higher tier 1 neutralization, ADCP, and ADCC as compared to soluble gp120. Moreover, Q11 conjugation altered the Fc N-glycosylation profile of antigen-specific antibodies, leading to a phenotype associated with increased ADCC in animals immunized with gp120-Q11. Thus, this nanomaterial vaccine strategy can enhance non-neutralizing antibody functions possibly through modulation of immunoglobulin G Fc N-glycosylation.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Nanofibras , Animais , Glicosilação , Anticorpos Anti-HIV , Infecções por HIV/prevenção & controle , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G , Vacinas de Subunidades Antigênicas
5.
Mater Adv ; 1(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-38711924

RESUMO

Metal oxide (MO) thin-film transistors (TFTs) are expected to enable low-cost flexible and printed electronics, given their excellent charge transport, low processing temperatures and solution processability. However, achieving adequate mobility when processed scalably at low temperatures compatible with plastic electronics is a challenge. Here, we explore process-structure-transport relationships in blade-coated indium oxide (In2O3) TFTs via both sol-gel and combustion chemistries. We find that the sol-gel chemistry enables n-type TFTs when annealed at 200 °C to 225 °C with noticeable electron mobility ((3.4 ± 1.3) cm2V-1s-1) yet minimal In2O3 crystallinity and surprisingly low levels of the metal-oxygen-metal (M-O-M) lattice content (≈46 %). Increased annealing temperatures result in the appearance of nanocrystalline domains and an increase in M-O-M content to ≈70 %, without any further increase in mobility. An actetylacetone combustion-assisted ink lowers the external thermal budget required for In2O3 crystallization but bypasses the electronically-active amorphous state and underperforms the sol-gel ink at low temperatures. Grain boundary formation and nanocrystalline inclusions in these films due to rapid combustion-assisted crystallization are suggested to be the likely origin behind the significantly compromised charge transport at low-temperatures. Overall, this study emphasizes the need to understand the complex interplay between local order (nanocrystallinity) and connectivity (grain boundary, amorphous phases) when optimizing low-temperature processed MO thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA