Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Anal Bioanal Chem ; 413(1): 141-157, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33048174

RESUMO

A new certified reference material (CRM) for size and shape analysis of elongated nanoparticles has been developed by the European Commission's Joint Research Centre. The CRM consists of titanium dioxide nanorods dispersed in 1-butanol, was coded ERM-FD103 and has been certified for different electron microscopy-based operationally defined measurands such as the modal and median values of the particle number-weighted distributions of the minimum and maximum Feret diameter, the maximum inscribed circle diameter, the area-equivalent circular diameter and the aspect ratio. The nanorods have nominal dimensions of 15 nm in width and 55 nm in length. Homogeneity and stability measurements were performed using transmission electron microscopy. The relative standard uncertainty for homogeneity ranged from 0.3 to 1.7%. No significant instability was detected for a shelf life of 18 months and a storage temperature of 18 °C. The certified values have been determined from the results of an interlaboratory comparison in which qualified expert laboratories participated with scanning and transmission electron microscopy. The certified values are traceable to the unit of length in the International System of Units, the metre, and the relative expanded uncertainties (confidence level of approximately 95%) range from 4 to 6%. These properties allow the CRM to be used for quality assurance and calibration of electron microscopy methods for nanoparticle size and shape analysis in ranges relevant for the implementation of EU legislation related to nanomaterials. The presented study discusses the purpose and results of the different steps that were followed to turn an industrially relevant raw titanium dioxide nanorod material into a fit-for-purpose CRM.Graphical abstract.

2.
Regul Toxicol Pharmacol ; 106: 187-196, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31051191

RESUMO

An early dialogue between nanomedicine developers and regulatory authorities are of utmost importance to anticipate quality and safety requirements for these innovative health products. In order to stimulate interactions between the various communities involved in a translation of nanomedicines to clinical applications, the European Commission's Joint Research Centre hosted a workshop titled "Bridging communities in the field of Nanomedicine" in Ispra/Italy on the 27th -28th September 2017. Experts from regulatory bodies, research institutions and industry came together to discuss the next generation of nanomedicines and their needs to obtain regulatory approval. The workshop participants came up with recommendations highlighting methodological gaps that should be addressed in ongoing projects addressing the regulatory science of nanomedicines. In addition, individual opinions of experts relevant to progress of the regulatory science in the field of nanomedicine were summarised in the format of a survey.


Assuntos
Nanomedicina , Tomada de Decisões , Sistemas de Apoio a Decisões Clínicas , Humanos , Inquéritos e Questionários
3.
Langmuir ; 33(33): 8213-8224, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28731349

RESUMO

Line-start incremental centrifugal liquid sedimentation (disc-CLS) is a powerful method to determine particle size based on the principles of Stokes' law. Because several of the input quantities of the Stokes equation cannot be easily determined for this case of a rotating disc, the disc-CLS approach relies on calibrating the sedimentation time scale with reference particles. To use these calibrant particles for establishing metrological traceability, they must fulfill the same requirements as those imposed on a certified reference material, i.e., their certified Stokes diameter and density value must come with a realistic measurement uncertainty and with a traceability statement. As is the case for several other techniques, the calibrants do not always come with uncertainties for the assigned modal diameter and effective particle density. The lack of such information and the absence of a traceability statement make it difficult for the end-user to estimate the uncertainty of the measurement results and to compare them with results obtained by others. We present the results of a collaborative study that aimed at demonstrating the traceability of particle size results obtained with disc-CLS. For this purpose, the particle size and effective particle density of polyvinyl chloride calibrants were measured using different validated methods, and measurement uncertainties were estimated according to the Guide to the Expression of Uncertainty in Measurement. The results indicate that the modal Stokes diameter and effective particle density that are assigned to the calibrants are accurate within 5% and 3.5%, respectively, and that they can be used to establish traceability of particle size results obtained with disc-CLS. This conclusion has a great impact on the traceability statement of certified particle size reference materials, for which the traceability is limited to the size and density values of the calibrant particles.

4.
Anal Bioanal Chem ; 407(7): 1831-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600685

RESUMO

The value assignment for properties of six certified reference materials (ERM-AD623a-f), each containing a plasmid DNA solution ranging from 1 million to 10 copies per µL, by using digital PCR (dPCR) with the BioMark™ HD System (Fluidigm) has been verified by applying droplet digital PCR (ddPCR) using the QX100 system (Bio-Rad). One of the critical factors in the measurement of copy number concentrations by digital PCR is the partition volume. Therefore, we determined the average droplet volume by optical microscopy, revealing an average droplet volume that is 8 % smaller than the droplet volume used as the defined parameter in the QuantaSoft software version 1.3.2.0 (Bio-Rad) to calculate the copy number concentration. This observation explains why copy number concentrations estimated with ddPCR and using an average droplet volume predefined in the QuantaSoft software were systematically lower than those measured by dPCR, creating a significant bias between the values obtained by these two techniques. The difference was not significant anymore when the measured droplet volume of 0.834 nL was used to estimate copy number concentrations. A new version of QuantaSoft software (version 1.6.6.0320), which has since been released with Bio-Rad's new QX200 systems and QX100 upgrades, uses a droplet volume of 0.85 nL as a defined parameter to calculate copy number concentration.


Assuntos
Variações do Número de Cópias de DNA , Reação em Cadeia da Polimerase/métodos , Padrões de Referência
5.
Materials (Basel) ; 14(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429974

RESUMO

Zeta potential is frequently used to examine the colloidal stability of particles and macromolecules in liquids. Recently, it has been suggested that zeta potential can also play an important role for grouping and read-across of nanoforms in a regulatory context. Although the measurement of zeta potential is well established, only little information is reported on key metrological principles such as validation and measurement uncertainties. This contribution presents the results of an in-house validation of the commonly used electrophoretic light scattering (ELS) and the relatively new particle tracking analysis (PTA) methods. The performance characteristics were assessed by analyzing silica and polystyrene reference materials. The ELS and PTA methods are robust and have particle mass working ranges of 0.003 mg/kg to 30 g/kg and 0.03 mg/kg to 1.5 mg/kg, respectively. Despite different measurement principles, both methods exhibit similar uncertainties for repeatability (2%), intermediate precision (3%) and trueness (4%). These results confirm that the developed methods can accurately measure the zeta potential of silica and polystyrene particles and can be transferred to other laboratories that analyze similar types of samples. If direct implementation is impossible, the elaborated methodologies may serve as a guide to help laboratories validating their own methods.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29923692

RESUMO

Appropriate documentary standards and reference materials are crucial building blocks for the development of innovative products. In order to support the emerging sector of nanomedicine, relevant standards must be identified and/or developed before the products will enter into the regulatory approval process. The anticipation of standardization needs requires a good understanding on the regulatory information requirements that can be triggered by the particularities of nanomedicines. However, robust datasets allowing firm conclusions on regulatory demands are not yet available due to a lack of regulatory experience with innovative products. Such a catch-22 situation can only be advanced in an iterative process by monitoring continuously the scientific evidence and by promoting intensive knowledge exchange between all involved stakeholders. In this study, we have compiled information requirements released by regulatory scientists so far and mapped it against available standards that could be of relevance for nanomedicines. Our gap analysis clearly demonstrated that for some endpoints such as drug release/loading and the interaction of nanomedicines with the immune system no standards are available so far. The emerging nanomedicine sector could benefit from cross-sector collaboration and review the suitability of standards that have been developed for nanomaterials used for other industrial applications. Only a concerted action of all parties can lead to a smooth translation of nanomedicines to clinical application and to the market. This is in particular important because nanotechnology-based drug delivery systems are key for the development and implementation of personalized medicine. This article is characterized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Assuntos
Nanomedicina/legislação & jurisprudência , Nanomedicina/normas , Controle Social Formal , Animais , Aprovação de Drogas , Liberação Controlada de Fármacos , Humanos , Padrões de Referência
7.
J Nanopart Res ; 19(8): 271, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824287

RESUMO

Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

8.
J Nanopart Res ; 18(8): 250, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27616935

RESUMO

In November 2015, an article by A. J. Lecloux was published in this journal (J Nanopart Res, 17:447, 2015). The article focused on the use of volume-specific surface area (VSSA) for the implementation of the European Commission's recommended definition of "nanomaterial". In that paper, VSSA values were calculated for polydisperse particulate materials using a particle number-based averaging method which do not agree with earlier results of VSSA simulations of polydisperse materials reported in 2014 by the Joint Research Centre (JRC) of the European Commission (EC). In this contribution, we explain the difference between traditional view of VSSA which was used by the JRC and the proposed model of Lecloux. Through the use of some simple examples for polydisperse materials, it is demonstrated that the latter produces values which neither correspond to the generally accepted definition of VSSA nor relate to the commonly used experimental methods for determining VSSA using gas adsorption. Lecloux's model therefore does not constitute a basis for practical implementation of the EC's definition of nanomaterial using gas adsorption techniques.

9.
J Nanopart Res ; 18: 171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441027

RESUMO

A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.

11.
Front Chem ; 3: 56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539428

RESUMO

This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterization of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots (QDs). This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a "reference material" (ISO Guide 30, 2015) or rather those of the recently defined category of "representative test material (RTM)" (ISO/TS 16195, 2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates, and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to RTM or reference material, and how this status depends on its intended use.

12.
Nanotoxicology ; 7(8): 1325-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23061887

RESUMO

The authors critically reviewed published lists of nano-objects and their physico-chemical properties deemed important for risk assessment and discussed metrological challenges associated with the development of nanoscale reference materials (RMs). Five lists were identified that contained 25 (classes of) nano-objects; only four (gold, silicon dioxide, silver, titanium dioxide) appeared on all lists. Twenty-three properties were identified for characterisation; only (specific) surface area appeared on all lists. The key themes that emerged from this review were: 1) various groups have prioritised nano-objects for development as "candidate RMs" with limited consensus; 2) a lack of harmonised terminology hinders accurate description of many nano-object properties; 3) many properties identified for characterisation are ill-defined or qualitative and hence are not metrologically traceable; 4) standardised protocols are critically needed for characterisation of nano-objects as delivered in relevant media and as administered to toxicological models; 5) the measurement processes being used to characterise a nano-object must be understood because instruments may measure a given sample in a different way; 6) appropriate RMs should be used for both accurate instrument calibration and for more general testing purposes (e.g., protocol validation); 7) there is a need to clarify that where RMs are not available, if "(representative) test materials" that lack reference or certified values may be useful for toxicology testing and 8) there is a need for consensus building within the nanotechnology and environmental, health and safety communities to prioritise RM needs and better define the required properties and (physical or chemical) forms of the candidate materials.


Assuntos
Segurança Química , Nanoestruturas , Nanotecnologia , Padrões de Referência , Exposição Ambiental , Nanoestruturas/efeitos adversos , Nanoestruturas/normas , Saúde Ocupacional , Risco , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA