Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genet Sel Evol ; 53(1): 24, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731010

RESUMO

BACKGROUND: The impact of individual genetic and genomic variations on immune responses is an emerging lever investigated in vaccination strategies. In our study, we used genetic and pre-vaccination blood transcriptomic data to study vaccine effectiveness in pigs. RESULTS: A cohort of 182 Large White pigs was vaccinated against Mycoplasma hyopneumoniae (M. hyo) at weaning (28 days of age), with a booster 21 days later. Vaccine response was assessed by measuring seric M. hyo antibodies (Ab) at 0 (vaccination day), 21 (booster day), 28, 35, and 118 days post-vaccination (dpv). Inter-individual variability of M. hyo Ab levels was observed at all time points and the corresponding heritabilities ranged from 0.46 to 0.57. Ab persistence was higher in females than in males. Genome-wide association studies with a 658 K SNP panel revealed two genomic regions associated with variations of M. hyo Ab levels at 21 dpv at positions where immunity-related genes have been mapped, DAB2IP on chromosome 1, and ASAP1, CYRIB and GSDMC on chromosome 4. We studied covariations of Ab responses with the pre-vaccination blood transcriptome obtained by RNA-Seq for a subset of 82 pigs. Weighted gene correlation network and differential expression analyses between pigs that differed in Ab responses highlighted biological functions that were enriched in heme biosynthesis and platelet activation for low response at 21 dpv, innate antiviral immunity and dendritic cells for high response at 28 and 35 dpv, and cell adhesion and extracellular matrix for high response at 118 dpv. Sparse partial least squares discriminant analysis identified 101 genes that efficiently predicted divergent responders at all time points. We found weak negative correlations of M. hyo Ab levels with body weight traits, which revealed a trade-off that needs to be further explored. CONCLUSIONS: We confirmed the influence of the host genetics on vaccine effectiveness to M. hyo and provided evidence that the pre-vaccination blood transcriptome co-varies with the Ab response. Our results highlight that both genetic markers and blood biomarkers could be used as potential predictors of vaccine response levels and more studies are required to assess whether they can be exploited in breeding programs.


Assuntos
Imunogenicidade da Vacina , Pneumonia Suína Micoplasmática/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Transcriptoma , Animais , Anticorpos/sangue , Anticorpos/genética , Anticorpos/imunologia , Feminino , Heme/metabolismo , Imunidade Inata , Masculino , Mycoplasma hyopneumoniae/imunologia , Ativação Plaquetária , Pneumonia Suína Micoplasmática/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Suínos/imunologia , Vacinação/veterinária
2.
J Anim Breed Genet ; 137(1): 60-72, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31482656

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the aetiological agent of postweaning diarrhoea (PWD) in piglets. The SNPs located on the Mucine 4 (MUC4) and Fucosyltransferase 1 (FUT1) genes have been associated with the susceptibility to ETEC F4 and ETEC F18, respectively. The interplay between the MUC4 and FUT1 genotypes to ETEC infection and the use of amoxicillin in modifying the intestinal microbiota during a natural infection by multiresistant ETEC strains have never been investigated. The aim of this study was to evaluate the effects of the MUC4 and FUT1 genotypes and the administration of amoxicillin through different routes on the presence of diarrhoea and the faecal microbiota composition in piglets naturally infected with ETEC. Seventy-one piglets were divided into three groups: two groups differing by amoxicillin administration routes-parenteral (P) or oral (O) and a control group without antibiotics (C). Faecal scores, body weight, presence of ETEC F4 and F18 were investigated 4 days after the arrival in the facility (T0), at the end of the amoxicillin administration (T1) and after the withdrawal period (T2). The faecal bacteria composition was assessed by sequencing the 16S rRNA gene. We described that MUC4 and FUT1 genotypes were associated with the presence of ETEC F4 and ETEC F18. The faecal microbiota was influenced by the MUC4 genotypes at T0. We found the oral administration to be associated with the presence of diarrhoea at T1 and T2. Furthermore, the exposure to amoxicillin resulted in significant alterations of the faecal microbiota. Overall, MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections in pigs. Moreover, our data highlight that group amoxicillin treatment may produce adverse outcomes on pig health in course of multiresistant ETEC infection. Therefore, alternative control measures able to maintain a healthy faecal microbiota in weaners are recommended.


Assuntos
Amoxicilina/farmacologia , Diarreia/genética , Infecções por Escherichia coli/complicações , Fezes/microbiologia , Genótipo , Microbiota , Suínos/microbiologia , Amoxicilina/administração & dosagem , Amoxicilina/uso terapêutico , Animais , DNA Bacteriano/genética , Diarreia/complicações , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/fisiologia , Polimorfismo de Nucleotídeo Único , Suínos/genética , Desmame
3.
Immunogenetics ; 70(6): 401-417, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29256177

RESUMO

The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.


Assuntos
Artiodáctilos/genética , Complexo Principal de Histocompatibilidade/genética , Suínos/genética , Animais , Sequência de Bases , Evolução Biológica , Hibridização Genômica Comparativa/métodos , Evolução Molecular , Genes MHC Classe I , Genoma , Filogenia , Análise de Sequência de DNA/métodos
4.
Nature ; 491(7424): 393-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23151582

RESUMO

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.


Assuntos
Genoma/genética , Filogenia , Sus scrofa/classificação , Sus scrofa/genética , Animais , Demografia , Modelos Animais , Dados de Sequência Molecular , Dinâmica Populacional
5.
BMC Genomics ; 16: 26, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613284

RESUMO

BACKGROUND: Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. RESULTS: The LPS affected 15 to 20 times fewer genes than PMA-Ionomycin after both 4 hours (T4) and 24 hours (T24), of in vitro stimulation, in comparison with mock-stimulated PBMCs. LPS induced an inflammatory response as shown by a significant up-regulation of IL12A and CXCL11 at T4, followed by an increased transcription of IL6, IL1B, IL1A, IL36, IL37, TNF, and CCL4 at T24. Surprisingly, we could not find an up-regulation of IL8 either at T4 or at T24, and detected a down-regulation of DEFB1 and BPI at T24. A concerted up-regulation of SAA1, S100A12 and F3 was found upon stimulation by LPS. PMA-Ionomycin induced a very early expression of Th1, Th2, Treg, and Th17 responses by PBMCs at T4. The Th1 response increased at T24 as shown by the increase of the transcription of IFNG and by contrast to other cytokines which significantly decreased from T4 to T24 (IL2, IL4, IL10, IL13, IL17A, CD69) by comparison to mock-stimulation. The granulocyte-macrophage colony-stimulating factor (CSF2) was by far the most over-expressed gene at both T4 and T24 by comparison to mock-stimulated cells, confirming a major impact of PMA-Ionomycin on cell growth and proliferation. A significant down-regulation of IL16 was observed at T4 and T24, in agreement with a role of IL16 in PBMC apoptosis. CONCLUSIONS: We report new data on the responses of PBMCs to LPS and PMA-Ionomycin in the rabbit species, thus enlarging the set of mammalian species for which such reports exist. The availability of the rabbit genome assembly together with high throughput genomic tools should pave the way for more intense genomic studies for this species, which is known to be a very relevant biomedical model in immunology and physiology.


Assuntos
Imunidade/genética , Leucócitos Mononucleares/imunologia , Transcriptoma , Animais , Citocinas/genética , Citocinas/metabolismo , Genoma , Ionomicina/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Coelhos , Acetato de Tetradecanoilforbol/farmacologia , Transcriptoma/efeitos dos fármacos
6.
Genet Sel Evol ; 46: 12, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24528607

RESUMO

BACKGROUND: Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs. METHODS: Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64,432 SNPs on the chip, 44,412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly. RESULTS: Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits. CONCLUSIONS: GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.


Assuntos
Haplótipos , Carne/análise , Locos de Características Quantitativas , Sus scrofa/genética , Animais , Composição Corporal , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/fisiologia
7.
Microbiome ; 12(1): 116, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943206

RESUMO

BACKGROUND: Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS: We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION: We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.


Assuntos
Fezes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Suínos/microbiologia , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Metagenômica/métodos , Prevotella/genética , Prevotella/classificação , Ruminococcus/genética , Treponema/genética
8.
BMC Genomics ; 14: 894, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24341289

RESUMO

BACKGROUND: Immune traits (ITs) are potentially relevant criteria to characterize an individual's immune response. Our aim was to investigate whether the peripheral blood transcriptome can provide a significant and comprehensive view of IT variations in pig. RESULTS: Sixty-day-old Large White pigs classified as extreme for in vitro production of IL2, IL10, IFNγ and TNFα, phagocytosis activity, in vivo CD4⁻/CD8⁺ or TCRγδ + cell counts, and anti-Mycoplasma antibody levels were chosen to perform a blood transcriptome analysis with a porcine generic array enriched with immunity-related genes. Differentially expressed (DE) genes for in vitro production of IL2 and IL10, phagocytosis activity and CD4⁻/CD8⁺ cell counts were identified. Gene set enrichment analysis revealed a significant over-representation of immune response functions. To validate the microarray-based results, a subset of DE genes was confirmed by RT-qPCR. An independent set of 74 animals was used to validate the covariation between gene expression levels and ITs. Five potential gene biomarkers were found for prediction of IL2 (RALGDS), phagocytosis (ALOX12) or CD4⁻/CD8⁺ cell count (GNLY, KLRG1 and CX3CR1). On average, these biomarkers performed with a sensitivity of 79% and a specificity of 86%. CONCLUSIONS: Our results confirmed that gene expression profiling in blood represents a relevant molecular phenotype to refine ITs in pig and to identify potential biomarkers that can provide new insights into immune response analysis.


Assuntos
Biomarcadores/sangue , Sangue/imunologia , Suínos/imunologia , Transcriptoma , Imunidade Adaptativa , Animais , Citocinas/imunologia , Interpretação Estatística de Dados , Imunidade Inata , Imunocompetência , Masculino , Análise Multivariada , Análise de Sequência com Séries de Oligonucleotídeos , Fagocitose , Sensibilidade e Especificidade , Suínos/genética , Linfócitos T/imunologia
9.
BMC Genomics ; 14: 332, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23676093

RESUMO

BACKGROUND: The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. RESULTS: The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome. CONCLUSIONS: This extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig's adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


Assuntos
Genômica , Imunidade/genética , Anotação de Sequência Molecular , Suínos/genética , Suínos/imunologia , Animais , Bovinos , Evolução Molecular , Duplicação Gênica , Humanos , Imunoglobulinas/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores KIR/genética , Seleção Genética , Especificidade da Espécie
10.
Immunogenetics ; 65(10): 749-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23925440

RESUMO

We report on the analyses of genes encoding immunoglobulin heavy and light chains in the rabbit 6.51× whole genome assembly. This OryCun2.0 assembly confirms previous mapping of the duplicated IGK1 and IGK2 loci to chromosome 2 and the IGL lambda light chain locus to chromosome 21. The most frequently rearranged and expressed IGHV1 that is closest to IG DH and IGHJ genes encodes rabbit VHa allotypes. The partially inbred Thorbecke strain rabbit used for whole-genome sequencing was homozygous at the IGK but heterozygous with the IGHV1a1 allele in one of 79 IGHV-containing unplaced scaffolds and IGHV1a2, IGHM, IGHG, and IGHE sequences in another. Some IGKV, IGLV, and IGHA genes are also in other unplaced scaffolds. By fluorescence in situ hybridization, we assigned the previously unmapped IGH locus to the q-telomeric region of rabbit chromosome 20. An approximately 3-Mb segment of human chromosome 14 including IGH genes predicted to map to this telomeric region based on synteny analysis could not be located on assembled chromosome 20. Unplaced scaffold chrUn0053 contains some of the genes that comparative mapping predicts to be missing. We identified discrepancies between previous targeted studies and the OryCun2.0 assembly and some new BAC clones with IGH sequences that can guide other studies to further sequence and improve the OryCun2.0 assembly. Complete knowledge of gene sequences encoding variable regions of rabbit heavy, kappa, and lambda chains will lead to better understanding of how and why rabbits produce antibodies of high specificity and affinity through gene conversion and somatic hypermutation.


Assuntos
Cromossomos de Mamíferos/genética , Biologia Computacional/métodos , Genoma , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulinas/genética , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Feminino , Humanos , Alótipos de Imunoglobulina/sangue , Alótipos de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/genética , Hibridização in Situ Fluorescente , Masculino , Coelhos , Reprodutibilidade dos Testes
11.
J Surg Res ; 176(2): 621-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22137987

RESUMO

OBJECTIVES: We evaluated whether IGL-1, a graft preservation solution containing polyethylene glycol, improves the outcome of small bowel grafts in comparison to the University of Wisconsin (UW) solution in a pig allotransplantation model. MATERIALS AND METHODS: Seventeen pigs were randomly allocated to group 1 (n = 10; intestinal allotransplantation with IGL-1) and group 2 (n = 7; allotransplantation with UW). Pigs received no immunosuppression and were sacrificed on postoperative d (POD) 8. Intestinal specimens were obtained from the animal immediately before cold flushing (T0), 2 h after graft reperfusion (T1), and at sacrifice (T2). RESULTS: Survival rate to POD 8 was 50% in group 1 compared with 16% in group 2 (P < 0.05); 62% of pigs in group 1 did not present any acute cellular rejection (ACR) compared to 16% in group 2 (P < 0.05). Severe ACR rate was 25% in group 1 and 66% in group 2 (P < 0.05). iNOS activity and intestinal caspase 3 levels increased significantly between T0 and T1 in group 1 compared to group 2 (P < 0.05). Cell necrosis increased significantly between TO and T1 in group 2 compared with group 1 (P < 0.05) whereas cell apoptosis was significantly higher at T1 compared with T0 in group 1 in comparison to group 2. CONCLUSIONS: Our results show that IGL-1 improves intestinal graft viability as compared to UW solution, possibly by reducing graft immunogenicity and by favoring intestinal epithelial repair.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Intestino Delgado/transplante , Soluções para Preservação de Órgãos/farmacologia , Polietilenoglicóis/farmacologia , Doença Aguda , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Apoptose/imunologia , Caspase 3/metabolismo , Feminino , Glutationa/farmacologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/mortalidade , Sobrevivência de Enxerto/imunologia , Terapia de Imunossupressão , Insulina/farmacologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Rafinose/farmacologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/mortalidade , Traumatismo por Reperfusão/prevenção & controle , Sus scrofa , Transplante Homólogo
12.
Vet Res ; 43: 19, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22423651

RESUMO

The presence of foreign cells within the tissue/circulation of an individual is described as microchimerism. The main purpose of the present investigation was to study if microchimerism occurs in healthy sows/fetuses and if porcine reproductive and respiratory syndrome virus (PRRSV) infection influences this phenomenon. Six dams were inoculated intranasally with PRRSV and three non-inoculated dams served as controls. Male DNA was detected in female fetal sera of all dams via PCR. Male DNA was also detected in the maternal circulation. Sex-typing FISH showed the presence of male cells in the female fetal organs and vice versa. PRRSV infection did not influence microchimerism, but might misuse maternal and sibling microchimeric cells to enter fetuses.


Assuntos
Quimerismo/veterinária , DNA/sangue , Síndrome Respiratória e Reprodutiva Suína/fisiopatologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos/genética , Animais , Feminino , Hibridização in Situ Fluorescente/veterinária , Masculino , Reação em Cadeia da Polimerase/veterinária , Síndrome Respiratória e Reprodutiva Suína/virologia , Gravidez
13.
Mamm Genome ; 22(9-10): 602-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21626174

RESUMO

Cutaneous melanoma arises from transformed melanocytes and is caused mainly by environmental effects such as ultraviolet radiation and to a lesser extent by predisposing genetic variants. Only a few susceptibility genes for cutaneous melanoma have been identified so far in human; therefore, animal models represent a valuable alternative for genetic studies of this disease. In a previous quantitative trait locus (QTL) study, several susceptibility regions were identified in a swine biomedical model, the MeLiM (Melanoblastoma-bearing Libechov minipig) pigs. This article details the fine-mapping of a QTL located on SSC13 (Sus scrofa chromosome 13) through an increase in marker density. New microsatellites were used to confirm the results of the first analysis, and MITF (microphthalmia-associated transcription factor) was selected as a candidate gene for melanoma development. A single-marker association analysis was performed with single-nucleotide polymorphisms (SNPs) spread over the locus, but it did not reveal a significant association with diverse melanoma-related traits. In parallel, MITF alternative transcripts were characterized and their expression was investigated in different porcine tissues. The obtained results showed a complex transcriptional regulation concordant with the one present in other mammals. Notably, the ratio between MITF+ and MITF- isoforms in melanoma samples followed the same pattern as in human tumors, which highlights the adequacy of the MeLiM pig as a model for human melanoma. In conclusion, although MITF does not seem to be the causal gene of the QTL initially observed, we do not exclude a prominent role of its transcription and function in the outbreak and evolution of the tumors observed in pigs.


Assuntos
Predisposição Genética para Doença , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias Cutâneas/genética , Animais , Feminino , Regulação da Expressão Gênica , Ligação Genética , Masculino , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA Mensageiro , Neoplasias Cutâneas/metabolismo , Sus scrofa
14.
BMC Mol Cell Biol ; 22(1): 45, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521351

RESUMO

BACKGROUND: The crucial role of the major histocompatibility complex (MHC) for the immune response to infectious diseases is well-known, but no information is available on the 3D nuclear organization of this gene-dense region in immune cells, whereas nuclear architecture is known to play an essential role on genome function regulation. We analyzed the spatial arrangement of the three MHC regions (class I, III and II) in macrophages using 3D-FISH. Since this complex presents major differences in humans and pigs with, notably, the presence of the centromere between class III and class II regions in pigs, the analysis was implemented in both species to determine the impact of this organization on the 3D conformation of the MHC. The expression level of the three genes selected to represent each MHC region was assessed by quantitative real-time PCR. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen modifies their expression level and their 3D organization. RESULTS: While the three MHC regions occupy an intermediate radial position in porcine macrophages, the class I region was clearly more peripheral in humans. The BAC center-to-center distances allowed us to propose a 3D nuclear organization of the MHC in each species. LPS/IFNγ activation induces a significant decompaction of the chromatin between class I and class III regions in pigs and between class I and class II regions in humans. We detected a strong overexpression of TNFα (class III region) in both species. Moreover, a single nucleus analysis revealed that the two alleles can have either the same or a different compaction pattern. In addition, macrophage activation leads to an increase in alleles that present a decompacted pattern in humans and pigs. CONCLUSIONS: The data presented demonstrate that: (i) the MHC harbors a different 3D organization in humans and pigs; (ii) LPS/IFNγ activation induces chromatin decompaction, but it is not the same area affected in the two species. These findings were supported by the application of an original computation method based on the geometrical distribution of the three target genes. Finally, the position of the centromere inside the swine MHC could influence chromatin reorganization during the activation process.


Assuntos
Macrófagos , Complexo Principal de Histocompatibilidade , Animais , Núcleo Celular , Centrômero , Humanos , Lipopolissacarídeos/farmacologia , Complexo Principal de Histocompatibilidade/genética , Suínos
15.
NPJ Vaccines ; 6(1): 92, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294732

RESUMO

This study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.

16.
BMC Genomics ; 11: 292, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20459780

RESUMO

BACKGROUND: Designing sustainable animal production systems that better balance productivity and resistance to disease is a major concern. In order to address questions related to immunity and resistance to disease in pig, it is necessary to increase knowledge on its immune system and to produce efficient tools dedicated to this species. RESULTS: A long-oligonucleotide-based chip referred to as SLA-RI/NRSP8-13K was produced by combining a generic set with a newly designed SLA-RI set that targets all annotated loci of the pig major histocompatibility complex (MHC) region (SLA complex) in both orientations as well as immunity genes outside the SLA complex. The chip was used to study the immune response of pigs following stimulation of porcine peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) or a mixture of phorbol myristate acetate (PMA) and ionomycin for 24 hours. Transcriptome analysis revealed that ten times more genes were differentially expressed after PMA/ionomycin stimulation than after LPS stimulation. LPS stimulation induced a general inflammation response with over-expression of SAA1, pro-inflammatory chemokines IL8, CCL2, CXCL5, CXCL3, CXCL2 and CCL8 as well as genes related to oxidative processes (SOD2) and calcium pathways (S100A9 and S100A12). PMA/ionomycin stimulation induced a stronger up-regulation of T cell activation than of B cell activation with dominance toward a Th1 response, including IL2, CD69 and TNFRSF9 (tumor necrosis factor receptor superfamily, member 9) genes. In addition, a very intense repression of THBS1 (thrombospondin 1) was observed. Repression of MHC class I genes was observed after PMA/ionomycin stimulation despite an up-regulation of the gene cascade involved in peptide processing. Repression of MHC class II genes was observed after both stimulations. Our results provide preliminary data suggesting that antisense transcripts mapping to the SLA complex may have a role during immune response. CONCLUSION: The SLA-RI/NRSP8-13K chip was found to accurately decipher two distinct immune response activations of PBMCs indicating that it constitutes a valuable tool to further study immunity and resistance to disease in pig. The transcriptome analysis revealed specific and common features of the immune responses depending on the stimulation agent that increase knowledge on pig immunity.


Assuntos
Perfilação da Expressão Gênica , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Sus scrofa/imunologia , Sequência de Aminoácidos , Animais , Redes Reguladoras de Genes , Antígenos de Histocompatibilidade/genética , Ionomicina/imunologia , Lipopolissacarídeos/imunologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Sus scrofa/metabolismo , Acetato de Tetradecanoilforbol/imunologia
17.
Genomics ; 93(3): 261-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18996466

RESUMO

The structure of the entire genomic region of swine leukocyte antigen (SLA)-the porcine major histocompatibility complex--was recently elucidated in a particular haplotype named Hp-1.0 (H01). However, it has been suggested that there are differences in the number of loci of SLA genes, particularly classical class I genes, among haplotypes. To clarify the between-haplotype copy number variance in genes of the SLA region, we sequenced the genomic region carrying SLA classical class I genes on two different haplotypes, revealing increments of up to six in the number of classical class I genes in a single haplotype. All of the SLA-1(-like) (SLA-1 and newly designated SLA-12) and SLA-3 genes detected in the haplotypes thus analyzed were transcribed in the individual. The process by which duplication of SLA classical class I genes was likely to have occurred was interpreted from an analysis of repetitive sequences adjacent to the duplicated class I genes.


Assuntos
Genes MHC Classe I/genética , Variação Genética , Antígenos de Histocompatibilidade Classe I/genética , Suínos/genética , Sequência de Aminoácidos , Animais , Cromossomos Artificiais Bacterianos , Duplicação Gênica , Regulação da Expressão Gênica , Haplótipos , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II , Dados de Sequência Molecular , Filogenia , Suínos/imunologia
18.
Sci Rep ; 10(1): 234, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937803

RESUMO

Minipigs are a group of small-sized swine lines, which show a broad range of phenotype variation and which often tend to be obese. The SLAdd (DD) minipig line was created by the NIH and selected as homozygous at the SLA locus. It was brought to France more than 30 years ago and maintained inbred ever since. In this report, we characterized the physiological status of a herd of French DD pigs by measuring intermediate phenotypes from blood and faeces and by using Large White (LW) pigs as controls. Three datasets were produced, i.e. complete blood counts (CBCs), microarray-based blood transcriptome, and faecal microbiota obtained by 16S rRNA sequencing. CBCs and expression profiles suggested a non-alcoholic fatty liver disease (NAFLD)-related pathology associated to comorbid cardiac diseases. The characterization of 16S sequencing data was less straightforward, suggesting only a potential weak link to obesity. The integration of the datasets identified several fine-scale associations between CBCs, gene expression, and faecal microbiota composition. NAFLD is a common cause of chronic liver disease in Western countries and is linked to obesity, type 2 diabetes mellitus and cardiac pathologies. Here we show that the French DD herd is potentially affected by this syndrome.


Assuntos
Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Fezes/microbiologia , Hepatopatia Gordurosa não Alcoólica/genética , Fenótipo , Suínos , Porco Miniatura
19.
Annu Rev Anim Biosci ; 8: 171-198, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846353

RESUMO

In pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Suínos/imunologia , Animais , Regulação da Expressão Gênica , Modelos Animais , Suínos/genética , Doenças dos Suínos/imunologia , Transplantes/imunologia
20.
Anim Microbiome ; 2(1): 2, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33499995

RESUMO

BACKGROUND: In pig production systems, weaning is a crucial period characterized by nutritional, environmental, and social stresses. Piglets transition from a milk-based diet to a solid, more complex plant-based diet, and their gut physiology must adapt accordingly. It is well established that piglets weaned later display improved health, better wean-to-finish growth performance, and lower mortality rates. The aim of this study was to evaluate the impact of weaning age on fecal microbiota diversity and composition in piglets. Forty-eight Large White piglets were divided into 4 groups of 12 animals that were weaned at different ages: 14 days (early weaning), 21 days (a common weaning age in intensive pig farming), 28 days (idem), and 42 days (late weaning). Microbiota composition was assessed in each group by sequencing the 16S rRNA gene using fecal samples taken on the day of weaning, 7 days later, and at 60 days of age. RESULTS: In each group, there were significant differences in fecal microbiota composition before and after weaning (p < 0.05), confirming that weaning can drastically change the gut microbiota. Microbiota diversity was positively correlated with weaning age: microbial alpha diversity and richness were higher in piglets weaned at 42 days of age both on the day of weaning and 7 days later. The abundance of Faecalibacterium prausnitzii operational taxonomic units (OTUs) was also higher in piglets weaned at 42 days of age. CONCLUSIONS: Overall, these results show that late weaning increased gut microbiota diversity and the abundance of F. prausnitzii, a microorganism with positive effects in humans. Piglets might thus derive a competitive advantage from later weaning because they have more time to accumulate a higher diversity of potentially beneficial microbes prior to the stressful and risky weaning period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA